PARS-Push: Personalized, Asynchronous and Robust Decentralized Optimization
We study the multi-step Model-Agnostic Meta-Learning (MAML) framework where a group of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> agents seeks to find a common point that enables "few-shot" learning (personalization) via loc...
Gespeichert in:
| Veröffentlicht in: | IEEE control systems letters Jg. 7; S. 361 - 366 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2023
|
| Schlagworte: | |
| ISSN: | 2475-1456, 2475-1456 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study the multi-step Model-Agnostic Meta-Learning (MAML) framework where a group of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> agents seeks to find a common point that enables "few-shot" learning (personalization) via local stochastic gradient steps on their local functions. We formulate the personalized optimization problem under the MAML framework and propose PARS-Push, a decentralized asynchronous algorithm robust to message failures, communication delays, and directed message sharing. We characterize the convergence rate of PARS-Push under arbitrary multi-step personalization for smooth strongly convex, and smooth non-convex functions. Moreover, we provide numerical experiments showing its performance under heterogeneous data setups. |
|---|---|
| ISSN: | 2475-1456 2475-1456 |
| DOI: | 10.1109/LCSYS.2022.3189317 |