Asynchronous Parallel Nonconvex Optimization Under the Polyak-Łojasiewicz Condition

Communication delays and synchronization are major bottlenecks for parallel computing, and tolerating asynchrony is therefore crucial for accelerating parallel computation. Motivated by optimization problems that do not satisfy convexity assumptions, we present an asynchronous block coordinate desce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters Jg. 6; S. 524 - 529
Hauptverfasser: Yazdani, Kasra, Hale, Matthew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2022
Schlagworte:
ISSN:2475-1456, 2475-1456
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Communication delays and synchronization are major bottlenecks for parallel computing, and tolerating asynchrony is therefore crucial for accelerating parallel computation. Motivated by optimization problems that do not satisfy convexity assumptions, we present an asynchronous block coordinate descent algorithm for nonconvex optimization problems whose objective functions satisfy the Polyak-Łojasiewicz condition. This condition is a generalization of strong convexity to nonconvex problems and requires neither convexity nor uniqueness of minimizers. Under only assumptions of mild smoothness of objective functions and bounded delays, we prove that a linear convergence rate is obtained. Numerical experiments for logistic regression problems are presented to illustrate the impact of asynchrony upon convergence.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2021.3082800