Evolutionary Constrained Multiobjective Optimization: Scalable High-Dimensional Constraint Benchmarks and Algorithm
Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highl...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 28; H. 4; S. 965 - 979 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2024
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highly correlated with the objective values, which makes the features of constraints too monotonic and differ from the properties of the real-world problems. Accordingly, previous CMOEAs cannot solve real-world problems well, which generally involve decision space constraints with multimodal/nonlinear features. Therefore, we propose a new benchmark framework and design a suite of new test functions with scalable high-dimensional decision space constraints. To be specific, different high-dimensional constraint functions and mixed linkages in variables are considered to be close to realistic features. In this framework, several parameter interfaces are provided, so that users can easily adjust the parameters to obtain the variant functions and test the generalization performance of the algorithms. Different types of existing CMOEAs are employed to test the use of the proposed test functions, and the results show that they are easy to fall into local feasible regions. Therefore, we improve one evolutionary multitasking-based CMOEA to better handle these problems, in which a new search algorithm is designed to enhance the search abilities of populations. Compared with the existing CMOEAs, the proposed CMOEA presents better performance. |
|---|---|
| AbstractList | Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highly correlated with the objective values, which makes the features of constraints too monotonic and differ from the properties of the real-world problems. Accordingly, previous CMOEAs cannot solve real-world problems well, which generally involve decision space constraints with multimodal/nonlinear features. Therefore, we propose a new benchmark framework and design a suite of new test functions with scalable high-dimensional decision space constraints. To be specific, different high-dimensional constraint functions and mixed linkages in variables are considered to be close to realistic features. In this framework, several parameter interfaces are provided, so that users can easily adjust the parameters to obtain the variant functions and test the generalization performance of the algorithms. Different types of existing CMOEAs are employed to test the use of the proposed test functions, and the results show that they are easy to fall into local feasible regions. Therefore, we improve one evolutionary multitasking-based CMOEA to better handle these problems, in which a new search algorithm is designed to enhance the search abilities of populations. Compared with the existing CMOEAs, the proposed CMOEA presents better performance. |
| Author | Yue, Caitong Lin, Hongyu Qu, Boyang Liang, Jing Zhang, Dezheng Qiao, Kangjia Yu, Kunjie |
| Author_xml | – sequence: 1 givenname: Kangjia orcidid: 0000-0003-1713-7700 surname: Qiao fullname: Qiao, Kangjia organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Jing orcidid: 0000-0003-0811-0223 surname: Liang fullname: Liang, Jing email: liangjing@zzu.edu.cn organization: School of Electrical Engineering and Automation, Henan Institute of Technology, Xinxiang, Henan, China – sequence: 3 givenname: Kunjie orcidid: 0000-0001-9945-1976 surname: Yu fullname: Yu, Kunjie organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 4 givenname: Caitong orcidid: 0000-0002-3362-0703 surname: Yue fullname: Yue, Caitong organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 5 givenname: Hongyu surname: Lin fullname: Lin, Hongyu organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 6 givenname: Dezheng orcidid: 0000-0003-4264-160X surname: Zhang fullname: Zhang, Dezheng organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China – sequence: 7 givenname: Boyang orcidid: 0000-0001-7539-3927 surname: Qu fullname: Qu, Boyang organization: School of Electrical and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China |
| BookMark | eNp9kNFOwjAUhhuDiYg-gIkXfYFhu27t6h1OFBMMF6LxbiltB8WuI2shwad3ExKNF16dk5Pz_-f83znoudppAK4wGmKM-M18_JYPYxSTIYkzTCk9AX3MExwhFNNe26OMR4xl72fg3Ps1QjhJMe8DP97VdhtM7USzh3ntfGiEcVrB561tx4u1lsHsNJxtgqnMp-hWb-GLFFYsrIYTs1xF96bSznce9sciwDvt5KoSzYeHwik4ssu6MWFVXYDTUlivL491AF4fxvN8Ek1nj0_5aBrJmNIQqYRrihDTTKlyQTiRTNEsxRKrBCOSljErJS-l1BizTLIYCZQxkgqmeMoSSQYAH3xlU3vf6LLYNKb9Z19gVHTUio5a0VErjtRaDfujkSZ8h-5C2X-V1wel0Vr_uoQJzxJCvgDTWn-Z |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102111 crossref_primary_10_1109_JAS_2024_124377 crossref_primary_10_1016_j_swevo_2025_102055 crossref_primary_10_3390_math13050688 crossref_primary_10_1007_s13042_025_02768_w crossref_primary_10_1109_TETCI_2025_3526268 crossref_primary_10_1016_j_agwat_2025_109713 crossref_primary_10_1016_j_swevo_2025_101959 crossref_primary_10_1016_j_engappai_2025_111419 crossref_primary_10_3390_math13071191 crossref_primary_10_1109_JAS_2024_124545 crossref_primary_10_1016_j_swevo_2025_102100 crossref_primary_10_1007_s11432_023_3864_6 crossref_primary_10_1007_s11227_024_06496_w crossref_primary_10_3390_math13091441 crossref_primary_10_1093_bib_bbaf007 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1016_j_asoc_2025_113658 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_1016_j_swevo_2025_101904 crossref_primary_10_1016_j_apm_2025_116440 crossref_primary_10_1016_j_eswa_2025_129304 crossref_primary_10_1016_j_eswa_2025_127862 crossref_primary_10_1016_j_eswa_2025_129761 crossref_primary_10_1109_TSMC_2025_3547618 |
| Cites_doi | 10.1109/TCYB.2015.2493239 10.1109/TEVC.2020.3011829 10.3934/mbe.2022014 10.1109/tcyb.2021.3069814 10.1016/j.knosys.2021.107693 10.1109/4235.797969 10.1145/3321707.3321878 10.1109/tcyb.2021.3056176 10.1016/j.swevo.2019.100619 10.1109/tcyb.2022.3163759 10.1109/TCYB.2021.3086501 10.1002/tee.22933 10.1109/4235.996017 10.1109/TEVC.2021.3131124 10.1109/tevc.2022.3224600 10.1109/TEVC.2003.810761 10.1016/j.swevo.2022.101055 10.1109/tevc.2022.3230822 10.1109/tevc.2021.3110130 10.1016/j.ins.2021.01.029 10.1109/TEVC.2020.2981949 10.1016/j.ins.2021.07.078 10.1016/j.swevo.2021.100961 10.1109/TCYB.2016.2600577 10.1016/j.renene.2019.05.024 10.1109/CEC.2017.7969433 10.1016/j.swevo.2018.08.017 10.1109/tai.2022.3168038 10.1109/tevc.2023.3243109 10.1109/TSMC.2019.2954491 10.1109/TEVC.2019.2904900 10.1109/TSMC.2018.2807785 10.1109/tcyb.2020.3021138 10.1016/j.ins.2022.05.106 10.1109/tevc.2022.3155533 10.1016/j.asoc.2018.10.027 10.1016/j.ins.2019.07.076 10.1109/CEC.2016.7744320 10.1109/TEVC.2013.2281534 10.1016/j.swevo.2021.100932 10.1109/TEVC.2018.2855411 10.1109/tevc.2022.3186667 10.1109/TEVC.2007.894202 10.1109/TEVC.2021.3066301 10.1109/TCYB.2018.2819208 10.1109/TCYB.2020.2998038 10.1016/j.cor.2011.03.003 10.1109/TEVC.2020.3004012 10.1007/s00500-019-03794-x 10.1109/TITS.2020.3044442 10.1109/TEVC.2021.3089155 10.1109/tevc.2022.3175065 10.1016/j.knosys.2022.108510 10.1109/TCYB.2020.3031642 10.1016/j.knosys.2021.107263 10.1109/TEVC.2019.2896967 10.1109/TEVC.2022.3145582 10.1109/TCYB.2014.2345478 10.1162/evco_a_00259 10.1109/TEVC.2015.2395073 10.1007/978-3-031-14721-0_9 10.1109/tetci.2023.3236633 10.1080/0305215X.2016.1271661 10.1016/j.knosys.2022.109105 10.1016/j.knosys.2021.107653 10.1109/TSMC.2021.3061698 10.1109/TEVC.2019.2894743 10.1007/3-540-44719-9_20 10.1016/j.asoc.2019.02.041 10.1016/j.swevo.2020.100799 10.1109/TSMC.2021.3069986 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2023.3281666 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 979 |
| ExternalDocumentID | 10_1109_TEVC_2023_3281666 10139843 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62176238; 61976237; 62106230 funderid: 10.13039/501100001809 – fundername: Program for Science and Technology Innovation Talents in Universities of Henan Province grantid: 23HASTIT023 – fundername: Natural Science Foundation of Henan Province grantid: 222300420088 funderid: 10.13039/501100006407 – fundername: China Postdoctoral Science Foundation grantid: 2021T140616; 2021M692920 funderid: 10.13039/501100002858 – fundername: Program for Science and Technology Innovation Teams in Universities of Henan Province grantid: 23IRTSTHN010 – fundername: National Key Research and Development Program of China grantid: 2022YFD2001200 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-d49e6007e7ddfb393c7d6851c1d41035f27fc9fcce1178c720a08735a7d9574c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283906100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 03:13:50 EST 2025 Tue Nov 18 21:19:29 EST 2025 Wed Aug 27 02:34:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-d49e6007e7ddfb393c7d6851c1d41035f27fc9fcce1178c720a08735a7d9574c3 |
| ORCID | 0000-0003-0811-0223 0000-0003-1713-7700 0000-0001-7539-3927 0000-0001-9945-1976 0000-0002-3362-0703 0000-0003-4264-160X |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10139843 crossref_primary_10_1109_TEVC_2023_3281666 crossref_citationtrail_10_1109_TEVC_2023_3281666 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 Liang (ref54) 2006; 41 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 ref51 ref50 Zhang (ref7) 2008; 264 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref56 doi: 10.1109/TCYB.2015.2493239 – volume: 264 start-page: 1 volume-title: Multiobjective optimization test instances for the CEC 2009 special session and competition year: 2008 ident: ref7 – ident: ref20 doi: 10.1109/TEVC.2020.3011829 – ident: ref68 doi: 10.3934/mbe.2022014 – ident: ref2 doi: 10.1109/tcyb.2021.3069814 – ident: ref46 doi: 10.1016/j.knosys.2021.107693 – ident: ref64 doi: 10.1109/4235.797969 – ident: ref67 doi: 10.1145/3321707.3321878 – ident: ref33 doi: 10.1109/tcyb.2021.3056176 – ident: ref21 doi: 10.1016/j.swevo.2019.100619 – ident: ref44 doi: 10.1109/tcyb.2022.3163759 – ident: ref66 doi: 10.1109/TCYB.2021.3086501 – ident: ref65 doi: 10.1002/tee.22933 – ident: ref26 doi: 10.1109/4235.996017 – ident: ref49 doi: 10.1109/TEVC.2021.3131124 – ident: ref73 doi: 10.1109/tevc.2022.3224600 – ident: ref63 doi: 10.1109/TEVC.2003.810761 – ident: ref48 doi: 10.1016/j.swevo.2022.101055 – ident: ref43 doi: 10.1109/tevc.2022.3230822 – ident: ref59 doi: 10.1109/tevc.2021.3110130 – ident: ref40 doi: 10.1016/j.ins.2021.01.029 – ident: ref36 doi: 10.1109/TEVC.2020.2981949 – ident: ref45 doi: 10.1016/j.ins.2021.07.078 – ident: ref17 doi: 10.1016/j.swevo.2021.100961 – ident: ref55 doi: 10.1109/TCYB.2016.2600577 – ident: ref69 doi: 10.1016/j.renene.2019.05.024 – ident: ref10 doi: 10.1109/CEC.2017.7969433 – ident: ref35 doi: 10.1016/j.swevo.2018.08.017 – ident: ref3 doi: 10.1109/tai.2022.3168038 – ident: ref72 doi: 10.1109/tevc.2023.3243109 – ident: ref30 doi: 10.1109/TSMC.2019.2954491 – ident: ref57 doi: 10.1109/TEVC.2019.2904900 – ident: ref62 doi: 10.1109/TSMC.2018.2807785 – ident: ref18 doi: 10.1109/tcyb.2020.3021138 – ident: ref15 doi: 10.1016/j.ins.2022.05.106 – ident: ref25 doi: 10.1109/tevc.2022.3155533 – ident: ref27 doi: 10.1016/j.asoc.2018.10.027 – ident: ref58 doi: 10.1016/j.ins.2019.07.076 – ident: ref8 doi: 10.1109/CEC.2016.7744320 – ident: ref9 doi: 10.1109/TEVC.2013.2281534 – ident: ref39 doi: 10.1016/j.swevo.2021.100932 – ident: ref41 doi: 10.1109/TEVC.2018.2855411 – ident: ref5 doi: 10.1109/tevc.2022.3186667 – ident: ref52 doi: 10.1109/TEVC.2007.894202 – ident: ref34 doi: 10.1109/TEVC.2021.3066301 – ident: ref47 doi: 10.1109/TCYB.2018.2819208 – ident: ref14 doi: 10.1109/TCYB.2020.2998038 – ident: ref61 doi: 10.1016/j.cor.2011.03.003 – ident: ref1 doi: 10.1109/TEVC.2020.3004012 – ident: ref11 doi: 10.1007/s00500-019-03794-x – ident: ref71 doi: 10.1109/TITS.2020.3044442 – ident: ref23 doi: 10.1109/TEVC.2021.3089155 – ident: ref22 doi: 10.1109/tevc.2022.3175065 – ident: ref70 doi: 10.1016/j.knosys.2022.108510 – ident: ref32 doi: 10.1109/TCYB.2020.3031642 – ident: ref38 doi: 10.1016/j.knosys.2021.107263 – ident: ref13 doi: 10.1109/TEVC.2019.2896967 – ident: ref42 doi: 10.1109/TEVC.2022.3145582 – ident: ref60 doi: 10.1109/TCYB.2014.2345478 – ident: ref12 doi: 10.1162/evco_a_00259 – ident: ref53 doi: 10.1109/TEVC.2015.2395073 – ident: ref16 doi: 10.1007/978-3-031-14721-0_9 – ident: ref4 doi: 10.1109/tetci.2023.3236633 – ident: ref29 doi: 10.1080/0305215X.2016.1271661 – ident: ref51 doi: 10.1016/j.knosys.2022.109105 – ident: ref24 doi: 10.1016/j.knosys.2021.107653 – ident: ref28 doi: 10.1109/TSMC.2021.3061698 – ident: ref19 doi: 10.1109/TEVC.2019.2894743 – ident: ref6 doi: 10.1007/3-540-44719-9_20 – ident: ref31 doi: 10.1016/j.asoc.2019.02.041 – volume: 41 start-page: 8 issue: 8 year: 2006 ident: ref54 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization publication-title: J. Appl. Mech. – ident: ref37 doi: 10.1016/j.swevo.2020.100799 – ident: ref50 doi: 10.1109/TSMC.2021.3069986 |
| SSID | ssj0014519 |
| Score | 2.6092236 |
| Snippet | Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 965 |
| SubjectTerms | Algorithm benchmark Benchmark testing decision space constraints evolutionary constrained multiobjective optimization Heuristic algorithms Linear programming Optimization Search problems Sociology Task analysis |
| Title | Evolutionary Constrained Multiobjective Optimization: Scalable High-Dimensional Constraint Benchmarks and Algorithm |
| URI | https://ieeexplore.ieee.org/document/10139843 |
| Volume | 28 |
| WOSCitedRecordID | wos001283906100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADhVJE-ZIHJqQUJ07imK2UVkyFoaBuUWJfaKEfKE0r8e-xHRfKABJbFNmOlWf7Lrm79xC6FEQoIyOJk3qRdHwWEYfTVDiuDCFQHoYgYWbEJli_Hw2H_NEWq5taGAAwyWfQ0pcmli_nYql_lakdrvyVyKcVVGEsLIu1vkIGmielzKbnymWMhjaE6RJ-Peg-d1paJ7xFPRMn-2GENlRVjFHp1f45nX20Z71H3C7hPkBbMKuj2lqZAduNWke7GzSDh2jRXdkFluQfWEt0GmEIkNiU387T1_LUww_q_JjawswbNVoy0YVVWOeCOHdaBqCk8PgeosC36oGjaZK_LXAyk7g9eZnn42I0baCnXnfQuXes2IIjlI0uHOlz0Fz1wKTMUsqpYDJU7phwpe8SGmQeywTPhADXZZFgHklIxGiQMMkD5gt6hKqz-QyOEaauB8CAQ8I8X7AwTaM0pX7mSQ6ZlLKJyPrtx8IyketJT2LzRUJ4rAGLNWCxBayJrr66vJc0HH81bmiwNhqWOJ38cv8U7ajufpnWd4aqRb6Ec7QtVsV4kV-YVfYJ1afSMw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5iA2lwYFA6MRjDB05I6ZzYiWNuXWnViVI4lKm3KLFf1o7-QGk2if8e23FLOYDELYocx8pn-734ve99AO8UVcbIaBoUUaoDLlIaSFaoINQJxsbDUDQpndiEGI_T6VR-9WR1x4VBRJd8hh176WL5eq3u7FGZWeHGX0k5O4CHMecRbehau6CBrZTS5NNL4zSmUx_EDKm8mPSvex2rFN5hkYuU_WGG9nRVnFkZHP_ngJ7BU-8_km4D-HN4gKsWHG-1GYhfqi14sldo8AVs-vd-iuXVT2JFOp00BGriCLjr4rbZ98gXs4MsPTXzg-ktX1hqFbHZIMFHKwTQFPH43UVNLs0LZ8u8-r4h-UqT7uJmXc3r2bIN3wb9SW8YeLmFQBkrXQeaS7TV6lFoXRZMMiV0YhwyFWoeUhaXkSiVLJXCMBSpEhHNaSpYnAstY8EVO4HD1XqFL4GwMEIUKDEXEVciKYq0KBgvIy2x1FqfAt1-_Uz5WuR20IvM_ZNQmVnAMgtY5gE7hfe7R340hTj-1bhtwdpr2OD06i_338LRcPJ5lI2uxp9ew2PTFW-S_M7gsK7u8A08Uvf1fFOduxn3C-mo1Xo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Constrained+Multiobjective+Optimization%3A+Scalable+High-Dimensional+Constraint+Benchmarks+and+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Qiao%2C+Kangjia&rft.au=Liang%2C+Jing&rft.au=Yu%2C+Kunjie&rft.au=Yue%2C+Caitong&rft.date=2024-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=4&rft.spage=965&rft.epage=979&rft_id=info:doi/10.1109%2FTEVC.2023.3281666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3281666 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |