Evolutionary Constrained Multiobjective Optimization: Scalable High-Dimensional Constraint Benchmarks and Algorithm

Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 28; H. 4; S. 965 - 979
Hauptverfasser: Qiao, Kangjia, Liang, Jing, Yu, Kunjie, Yue, Caitong, Lin, Hongyu, Zhang, Dezheng, Qu, Boyang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2024
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highly correlated with the objective values, which makes the features of constraints too monotonic and differ from the properties of the real-world problems. Accordingly, previous CMOEAs cannot solve real-world problems well, which generally involve decision space constraints with multimodal/nonlinear features. Therefore, we propose a new benchmark framework and design a suite of new test functions with scalable high-dimensional decision space constraints. To be specific, different high-dimensional constraint functions and mixed linkages in variables are considered to be close to realistic features. In this framework, several parameter interfaces are provided, so that users can easily adjust the parameters to obtain the variant functions and test the generalization performance of the algorithms. Different types of existing CMOEAs are employed to test the use of the proposed test functions, and the results show that they are easy to fall into local feasible regions. Therefore, we improve one evolutionary multitasking-based CMOEA to better handle these problems, in which a new search algorithm is designed to enhance the search abilities of populations. Compared with the existing CMOEAs, the proposed CMOEA presents better performance.
AbstractList Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been proposed to test the effect of the constrained multiobjective evolutionary algorithms (CMOEAs). Especially, the constraint functions are highly correlated with the objective values, which makes the features of constraints too monotonic and differ from the properties of the real-world problems. Accordingly, previous CMOEAs cannot solve real-world problems well, which generally involve decision space constraints with multimodal/nonlinear features. Therefore, we propose a new benchmark framework and design a suite of new test functions with scalable high-dimensional decision space constraints. To be specific, different high-dimensional constraint functions and mixed linkages in variables are considered to be close to realistic features. In this framework, several parameter interfaces are provided, so that users can easily adjust the parameters to obtain the variant functions and test the generalization performance of the algorithms. Different types of existing CMOEAs are employed to test the use of the proposed test functions, and the results show that they are easy to fall into local feasible regions. Therefore, we improve one evolutionary multitasking-based CMOEA to better handle these problems, in which a new search algorithm is designed to enhance the search abilities of populations. Compared with the existing CMOEAs, the proposed CMOEA presents better performance.
Author Yue, Caitong
Lin, Hongyu
Qu, Boyang
Liang, Jing
Zhang, Dezheng
Qiao, Kangjia
Yu, Kunjie
Author_xml – sequence: 1
  givenname: Kangjia
  orcidid: 0000-0003-1713-7700
  surname: Qiao
  fullname: Qiao, Kangjia
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0003-0811-0223
  surname: Liang
  fullname: Liang, Jing
  email: liangjing@zzu.edu.cn
  organization: School of Electrical Engineering and Automation, Henan Institute of Technology, Xinxiang, Henan, China
– sequence: 3
  givenname: Kunjie
  orcidid: 0000-0001-9945-1976
  surname: Yu
  fullname: Yu, Kunjie
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Caitong
  orcidid: 0000-0002-3362-0703
  surname: Yue
  fullname: Yue, Caitong
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Hongyu
  surname: Lin
  fullname: Lin, Hongyu
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 6
  givenname: Dezheng
  orcidid: 0000-0003-4264-160X
  surname: Zhang
  fullname: Zhang, Dezheng
  organization: School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 7
  givenname: Boyang
  orcidid: 0000-0001-7539-3927
  surname: Qu
  fullname: Qu, Boyang
  organization: School of Electrical and Information Engineering, Zhongyuan University of Technology, Zhengzhou, China
BookMark eNp9kNFOwjAUhhuDiYg-gIkXfYFhu27t6h1OFBMMF6LxbiltB8WuI2shwad3ExKNF16dk5Pz_-f83znoudppAK4wGmKM-M18_JYPYxSTIYkzTCk9AX3MExwhFNNe26OMR4xl72fg3Ps1QjhJMe8DP97VdhtM7USzh3ntfGiEcVrB561tx4u1lsHsNJxtgqnMp-hWb-GLFFYsrIYTs1xF96bSznce9sciwDvt5KoSzYeHwik4ssu6MWFVXYDTUlivL491AF4fxvN8Ek1nj0_5aBrJmNIQqYRrihDTTKlyQTiRTNEsxRKrBCOSljErJS-l1BizTLIYCZQxkgqmeMoSSQYAH3xlU3vf6LLYNKb9Z19gVHTUio5a0VErjtRaDfujkSZ8h-5C2X-V1wel0Vr_uoQJzxJCvgDTWn-Z
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102111
crossref_primary_10_1109_JAS_2024_124377
crossref_primary_10_1016_j_swevo_2025_102055
crossref_primary_10_3390_math13050688
crossref_primary_10_1007_s13042_025_02768_w
crossref_primary_10_1109_TETCI_2025_3526268
crossref_primary_10_1016_j_agwat_2025_109713
crossref_primary_10_1016_j_swevo_2025_101959
crossref_primary_10_1016_j_engappai_2025_111419
crossref_primary_10_3390_math13071191
crossref_primary_10_1109_JAS_2024_124545
crossref_primary_10_1016_j_swevo_2025_102100
crossref_primary_10_1007_s11432_023_3864_6
crossref_primary_10_1007_s11227_024_06496_w
crossref_primary_10_3390_math13091441
crossref_primary_10_1093_bib_bbaf007
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_asoc_2025_113658
crossref_primary_10_1016_j_asoc_2024_112428
crossref_primary_10_1016_j_swevo_2025_101904
crossref_primary_10_1016_j_apm_2025_116440
crossref_primary_10_1016_j_eswa_2025_129304
crossref_primary_10_1016_j_eswa_2025_127862
crossref_primary_10_1016_j_eswa_2025_129761
crossref_primary_10_1109_TSMC_2025_3547618
Cites_doi 10.1109/TCYB.2015.2493239
10.1109/TEVC.2020.3011829
10.3934/mbe.2022014
10.1109/tcyb.2021.3069814
10.1016/j.knosys.2021.107693
10.1109/4235.797969
10.1145/3321707.3321878
10.1109/tcyb.2021.3056176
10.1016/j.swevo.2019.100619
10.1109/tcyb.2022.3163759
10.1109/TCYB.2021.3086501
10.1002/tee.22933
10.1109/4235.996017
10.1109/TEVC.2021.3131124
10.1109/tevc.2022.3224600
10.1109/TEVC.2003.810761
10.1016/j.swevo.2022.101055
10.1109/tevc.2022.3230822
10.1109/tevc.2021.3110130
10.1016/j.ins.2021.01.029
10.1109/TEVC.2020.2981949
10.1016/j.ins.2021.07.078
10.1016/j.swevo.2021.100961
10.1109/TCYB.2016.2600577
10.1016/j.renene.2019.05.024
10.1109/CEC.2017.7969433
10.1016/j.swevo.2018.08.017
10.1109/tai.2022.3168038
10.1109/tevc.2023.3243109
10.1109/TSMC.2019.2954491
10.1109/TEVC.2019.2904900
10.1109/TSMC.2018.2807785
10.1109/tcyb.2020.3021138
10.1016/j.ins.2022.05.106
10.1109/tevc.2022.3155533
10.1016/j.asoc.2018.10.027
10.1016/j.ins.2019.07.076
10.1109/CEC.2016.7744320
10.1109/TEVC.2013.2281534
10.1016/j.swevo.2021.100932
10.1109/TEVC.2018.2855411
10.1109/tevc.2022.3186667
10.1109/TEVC.2007.894202
10.1109/TEVC.2021.3066301
10.1109/TCYB.2018.2819208
10.1109/TCYB.2020.2998038
10.1016/j.cor.2011.03.003
10.1109/TEVC.2020.3004012
10.1007/s00500-019-03794-x
10.1109/TITS.2020.3044442
10.1109/TEVC.2021.3089155
10.1109/tevc.2022.3175065
10.1016/j.knosys.2022.108510
10.1109/TCYB.2020.3031642
10.1016/j.knosys.2021.107263
10.1109/TEVC.2019.2896967
10.1109/TEVC.2022.3145582
10.1109/TCYB.2014.2345478
10.1162/evco_a_00259
10.1109/TEVC.2015.2395073
10.1007/978-3-031-14721-0_9
10.1109/tetci.2023.3236633
10.1080/0305215X.2016.1271661
10.1016/j.knosys.2022.109105
10.1016/j.knosys.2021.107653
10.1109/TSMC.2021.3061698
10.1109/TEVC.2019.2894743
10.1007/3-540-44719-9_20
10.1016/j.asoc.2019.02.041
10.1016/j.swevo.2020.100799
10.1109/TSMC.2021.3069986
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2023.3281666
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 979
ExternalDocumentID 10_1109_TEVC_2023_3281666
10139843
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62176238; 61976237; 62106230
  funderid: 10.13039/501100001809
– fundername: Program for Science and Technology Innovation Talents in Universities of Henan Province
  grantid: 23HASTIT023
– fundername: Natural Science Foundation of Henan Province
  grantid: 222300420088
  funderid: 10.13039/501100006407
– fundername: China Postdoctoral Science Foundation
  grantid: 2021T140616; 2021M692920
  funderid: 10.13039/501100002858
– fundername: Program for Science and Technology Innovation Teams in Universities of Henan Province
  grantid: 23IRTSTHN010
– fundername: National Key Research and Development Program of China
  grantid: 2022YFD2001200
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-d49e6007e7ddfb393c7d6851c1d41035f27fc9fcce1178c720a08735a7d9574c3
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283906100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:50 EST 2025
Tue Nov 18 21:19:29 EST 2025
Wed Aug 27 02:34:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-d49e6007e7ddfb393c7d6851c1d41035f27fc9fcce1178c720a08735a7d9574c3
ORCID 0000-0003-0811-0223
0000-0003-1713-7700
0000-0001-7539-3927
0000-0001-9945-1976
0000-0002-3362-0703
0000-0003-4264-160X
PageCount 15
ParticipantIDs ieee_primary_10139843
crossref_primary_10_1109_TEVC_2023_3281666
crossref_citationtrail_10_1109_TEVC_2023_3281666
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Liang (ref54) 2006; 41
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
ref51
ref50
Zhang (ref7) 2008; 264
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref56
  doi: 10.1109/TCYB.2015.2493239
– volume: 264
  start-page: 1
  volume-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
  year: 2008
  ident: ref7
– ident: ref20
  doi: 10.1109/TEVC.2020.3011829
– ident: ref68
  doi: 10.3934/mbe.2022014
– ident: ref2
  doi: 10.1109/tcyb.2021.3069814
– ident: ref46
  doi: 10.1016/j.knosys.2021.107693
– ident: ref64
  doi: 10.1109/4235.797969
– ident: ref67
  doi: 10.1145/3321707.3321878
– ident: ref33
  doi: 10.1109/tcyb.2021.3056176
– ident: ref21
  doi: 10.1016/j.swevo.2019.100619
– ident: ref44
  doi: 10.1109/tcyb.2022.3163759
– ident: ref66
  doi: 10.1109/TCYB.2021.3086501
– ident: ref65
  doi: 10.1002/tee.22933
– ident: ref26
  doi: 10.1109/4235.996017
– ident: ref49
  doi: 10.1109/TEVC.2021.3131124
– ident: ref73
  doi: 10.1109/tevc.2022.3224600
– ident: ref63
  doi: 10.1109/TEVC.2003.810761
– ident: ref48
  doi: 10.1016/j.swevo.2022.101055
– ident: ref43
  doi: 10.1109/tevc.2022.3230822
– ident: ref59
  doi: 10.1109/tevc.2021.3110130
– ident: ref40
  doi: 10.1016/j.ins.2021.01.029
– ident: ref36
  doi: 10.1109/TEVC.2020.2981949
– ident: ref45
  doi: 10.1016/j.ins.2021.07.078
– ident: ref17
  doi: 10.1016/j.swevo.2021.100961
– ident: ref55
  doi: 10.1109/TCYB.2016.2600577
– ident: ref69
  doi: 10.1016/j.renene.2019.05.024
– ident: ref10
  doi: 10.1109/CEC.2017.7969433
– ident: ref35
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref3
  doi: 10.1109/tai.2022.3168038
– ident: ref72
  doi: 10.1109/tevc.2023.3243109
– ident: ref30
  doi: 10.1109/TSMC.2019.2954491
– ident: ref57
  doi: 10.1109/TEVC.2019.2904900
– ident: ref62
  doi: 10.1109/TSMC.2018.2807785
– ident: ref18
  doi: 10.1109/tcyb.2020.3021138
– ident: ref15
  doi: 10.1016/j.ins.2022.05.106
– ident: ref25
  doi: 10.1109/tevc.2022.3155533
– ident: ref27
  doi: 10.1016/j.asoc.2018.10.027
– ident: ref58
  doi: 10.1016/j.ins.2019.07.076
– ident: ref8
  doi: 10.1109/CEC.2016.7744320
– ident: ref9
  doi: 10.1109/TEVC.2013.2281534
– ident: ref39
  doi: 10.1016/j.swevo.2021.100932
– ident: ref41
  doi: 10.1109/TEVC.2018.2855411
– ident: ref5
  doi: 10.1109/tevc.2022.3186667
– ident: ref52
  doi: 10.1109/TEVC.2007.894202
– ident: ref34
  doi: 10.1109/TEVC.2021.3066301
– ident: ref47
  doi: 10.1109/TCYB.2018.2819208
– ident: ref14
  doi: 10.1109/TCYB.2020.2998038
– ident: ref61
  doi: 10.1016/j.cor.2011.03.003
– ident: ref1
  doi: 10.1109/TEVC.2020.3004012
– ident: ref11
  doi: 10.1007/s00500-019-03794-x
– ident: ref71
  doi: 10.1109/TITS.2020.3044442
– ident: ref23
  doi: 10.1109/TEVC.2021.3089155
– ident: ref22
  doi: 10.1109/tevc.2022.3175065
– ident: ref70
  doi: 10.1016/j.knosys.2022.108510
– ident: ref32
  doi: 10.1109/TCYB.2020.3031642
– ident: ref38
  doi: 10.1016/j.knosys.2021.107263
– ident: ref13
  doi: 10.1109/TEVC.2019.2896967
– ident: ref42
  doi: 10.1109/TEVC.2022.3145582
– ident: ref60
  doi: 10.1109/TCYB.2014.2345478
– ident: ref12
  doi: 10.1162/evco_a_00259
– ident: ref53
  doi: 10.1109/TEVC.2015.2395073
– ident: ref16
  doi: 10.1007/978-3-031-14721-0_9
– ident: ref4
  doi: 10.1109/tetci.2023.3236633
– ident: ref29
  doi: 10.1080/0305215X.2016.1271661
– ident: ref51
  doi: 10.1016/j.knosys.2022.109105
– ident: ref24
  doi: 10.1016/j.knosys.2021.107653
– ident: ref28
  doi: 10.1109/TSMC.2021.3061698
– ident: ref19
  doi: 10.1109/TEVC.2019.2894743
– ident: ref6
  doi: 10.1007/3-540-44719-9_20
– ident: ref31
  doi: 10.1016/j.asoc.2019.02.041
– volume: 41
  start-page: 8
  issue: 8
  year: 2006
  ident: ref54
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
  publication-title: J. Appl. Mech.
– ident: ref37
  doi: 10.1016/j.swevo.2020.100799
– ident: ref50
  doi: 10.1109/TSMC.2021.3069986
SSID ssj0014519
Score 2.6092236
Snippet Evolutionary constrained multiobjective optimization has received extensive attention and research in the past two decades, and a lot of benchmarks have been...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 965
SubjectTerms Algorithm
benchmark
Benchmark testing
decision space constraints
evolutionary constrained multiobjective optimization
Heuristic algorithms
Linear programming
Optimization
Search problems
Sociology
Task analysis
Title Evolutionary Constrained Multiobjective Optimization: Scalable High-Dimensional Constraint Benchmarks and Algorithm
URI https://ieeexplore.ieee.org/document/10139843
Volume 28
WOSCitedRecordID wos001283906100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADhVJE-ZIHJqQUJ07imK2UVkyFoaBuUWJfaKEfKE0r8e-xHRfKABJbFNmOlWf7Lrm79xC6FEQoIyOJk3qRdHwWEYfTVDiuDCFQHoYgYWbEJli_Hw2H_NEWq5taGAAwyWfQ0pcmli_nYql_lakdrvyVyKcVVGEsLIu1vkIGmielzKbnymWMhjaE6RJ-Peg-d1paJ7xFPRMn-2GENlRVjFHp1f45nX20Z71H3C7hPkBbMKuj2lqZAduNWke7GzSDh2jRXdkFluQfWEt0GmEIkNiU387T1_LUww_q_JjawswbNVoy0YVVWOeCOHdaBqCk8PgeosC36oGjaZK_LXAyk7g9eZnn42I0baCnXnfQuXes2IIjlI0uHOlz0Fz1wKTMUsqpYDJU7phwpe8SGmQeywTPhADXZZFgHklIxGiQMMkD5gt6hKqz-QyOEaauB8CAQ8I8X7AwTaM0pX7mSQ6ZlLKJyPrtx8IyketJT2LzRUJ4rAGLNWCxBayJrr66vJc0HH81bmiwNhqWOJ38cv8U7ajufpnWd4aqRb6Ec7QtVsV4kV-YVfYJ1afSMw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5iA2lwYFA6MRjDB05I6ZzYiWNuXWnViVI4lKm3KLFf1o7-QGk2if8e23FLOYDELYocx8pn-734ve99AO8UVcbIaBoUUaoDLlIaSFaoINQJxsbDUDQpndiEGI_T6VR-9WR1x4VBRJd8hh176WL5eq3u7FGZWeHGX0k5O4CHMecRbehau6CBrZTS5NNL4zSmUx_EDKm8mPSvex2rFN5hkYuU_WGG9nRVnFkZHP_ngJ7BU-8_km4D-HN4gKsWHG-1GYhfqi14sldo8AVs-vd-iuXVT2JFOp00BGriCLjr4rbZ98gXs4MsPTXzg-ktX1hqFbHZIMFHKwTQFPH43UVNLs0LZ8u8-r4h-UqT7uJmXc3r2bIN3wb9SW8YeLmFQBkrXQeaS7TV6lFoXRZMMiV0YhwyFWoeUhaXkSiVLJXCMBSpEhHNaSpYnAstY8EVO4HD1XqFL4GwMEIUKDEXEVciKYq0KBgvIy2x1FqfAt1-_Uz5WuR20IvM_ZNQmVnAMgtY5gE7hfe7R340hTj-1bhtwdpr2OD06i_338LRcPJ5lI2uxp9ew2PTFW-S_M7gsK7u8A08Uvf1fFOduxn3C-mo1Xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Constrained+Multiobjective+Optimization%3A+Scalable+High-Dimensional+Constraint+Benchmarks+and+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Qiao%2C+Kangjia&rft.au=Liang%2C+Jing&rft.au=Yu%2C+Kunjie&rft.au=Yue%2C+Caitong&rft.date=2024-08-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=4&rft.spage=965&rft.epage=979&rft_id=info:doi/10.1109%2FTEVC.2023.3281666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3281666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon