Person-Specific Face Antispoofing With Subject Domain Adaptation

Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information forensics and security Ročník 10; číslo 4; s. 797 - 809
Hlavní autoři: Jianwei Yang, Zhen Lei, Dong Yi, Li, Stan Z.
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
ISSN:1556-6013, 1556-6021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects. In this paper, we propose a person-specific face antispoofing approach. It recognizes spoofing attacks using a classifier specifically trained for each subject, which dismisses the interferences among subjects. Moreover, considering the scarce or void fake samples for training, we propose a subject domain adaptation method to synthesize virtual features, which makes it tractable to train well-performed individual face antispoofing classifiers. The extensive experiments on two challenging data sets: 1) CASIA and 2) REPLAY-ATTACK demonstrate the prospect of the proposed approach.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2015.2403306