Person-Specific Face Antispoofing With Subject Domain Adaptation

Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information forensics and security Ročník 10; číslo 4; s. 797 - 809
Hlavní autori: Jianwei Yang, Zhen Lei, Dong Yi, Li, Stan Z.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2015
Predmet:
ISSN:1556-6013, 1556-6021
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Face antispoofing is important to practical face recognition systems. In previous works, a generic antispoofing classifier is trained to detect spoofing attacks on all subjects. However, due to the individual differences among subjects, the generic classifier cannot generalize well to all subjects. In this paper, we propose a person-specific face antispoofing approach. It recognizes spoofing attacks using a classifier specifically trained for each subject, which dismisses the interferences among subjects. Moreover, considering the scarce or void fake samples for training, we propose a subject domain adaptation method to synthesize virtual features, which makes it tractable to train well-performed individual face antispoofing classifiers. The extensive experiments on two challenging data sets: 1) CASIA and 2) REPLAY-ATTACK demonstrate the prospect of the proposed approach.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2015.2403306