Lossless Compression of Hyperspectral Images Using Clustered Linear Prediction With Adaptive Prediction Length
This letter explores the use of adaptive prediction length in clustered differential pulse code modulation (C-DPCM) lossless compression method for hyperspectral images. In the C-DPCM method, linear prediction is performed using coefficients optimized for each spectral cluster separately. The differ...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 9; číslo 6; s. 1118 - 1121 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2012
|
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This letter explores the use of adaptive prediction length in clustered differential pulse code modulation (C-DPCM) lossless compression method for hyperspectral images. In the C-DPCM method, linear prediction is performed using coefficients optimized for each spectral cluster separately. The difference between the predicted and original values is entropy coded using an adaptive range coder for each cluster. The results show that the C-DPCM-with-adaptive-prediction-length method has lower bit-per-pixel value than the original C-DPCM method for Consultative Committee for Space Data Systems 2006 AVIRIS test images. Both calibrated and uncalibrated image compression results are improved by adaptive prediction length. |
|---|---|
| ISSN: | 1545-598X 1558-0571 |
| DOI: | 10.1109/LGRS.2012.2191531 |