Lossless Compression of Hyperspectral Images Using Clustered Linear Prediction With Adaptive Prediction Length

This letter explores the use of adaptive prediction length in clustered differential pulse code modulation (C-DPCM) lossless compression method for hyperspectral images. In the C-DPCM method, linear prediction is performed using coefficients optimized for each spectral cluster separately. The differ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 9; číslo 6; s. 1118 - 1121
Hlavní autoři: Mielikainen, Jarno, Huang, Bormin
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.11.2012
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This letter explores the use of adaptive prediction length in clustered differential pulse code modulation (C-DPCM) lossless compression method for hyperspectral images. In the C-DPCM method, linear prediction is performed using coefficients optimized for each spectral cluster separately. The difference between the predicted and original values is entropy coded using an adaptive range coder for each cluster. The results show that the C-DPCM-with-adaptive-prediction-length method has lower bit-per-pixel value than the original C-DPCM method for Consultative Committee for Space Data Systems 2006 AVIRIS test images. Both calibrated and uncalibrated image compression results are improved by adaptive prediction length.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2012.2191531