Feasibility Study of the Mechanical Cooler System for LiteBIRD

LiteBIRD is the second strategic large-class mission of JAXA aiming to test inflation models. In this mission, cryogenic telescopes and low-temperature scientific instruments are needed to provide high-sensitivity. A mechanical cooler system will cool these telescopes to 5 K or lower, using the 4K-c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cryogenics (Guildford) Ročník 152; s. 104216
Hlavní autoři: Shinozaki, Keisuke, Odagiri, Kimihide, Yoshihara, Keisuke, Sekimoto, Yutaro, Dotani, Tadayasu, Fujimoto, Ryuichi, Narasaki, Katsuhiro, Yoshida, Seiji, Tsunematsu, Shoji, Isshiki, Masahito, Kanao, Kenichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.12.2025
Témata:
ISSN:0011-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract LiteBIRD is the second strategic large-class mission of JAXA aiming to test inflation models. In this mission, cryogenic telescopes and low-temperature scientific instruments are needed to provide high-sensitivity. A mechanical cooler system will cool these telescopes to 5 K or lower, using the 4K-class Joule Thomson cooler (4K-JT) that provides 4.5 K and the 2K Joule Thomson cooler (2K-JT) that provides 1.7 K, which serve as the precoolers of the multistage adiabatic demagnetization refrigerator (ADR). The 20K-class double-stage Stirling coolers (2ST) are also used as precoolers for the JT coolers and shield coolers. This paper presents a feasibility study of the mechanical cooler system and the status of these cooler developments. •A cryogen-free mechanical cooler system is proposed for the LiteBIRD payload module.•The 4K-JT provides 4.5 K and the 2K-JT provides 1.7 K.•The heat exchanger length is proposed based on the cooling performance test.•The heater control is needed at the 2K-JT cold tip and the 1.75 K stage to satisfy a required temperature stability.•The 2ST compressor was upgraded to prevent a mechanical wear and reduce a vibration levels.
AbstractList LiteBIRD is the second strategic large-class mission of JAXA aiming to test inflation models. In this mission, cryogenic telescopes and low-temperature scientific instruments are needed to provide high-sensitivity. A mechanical cooler system will cool these telescopes to 5 K or lower, using the 4K-class Joule Thomson cooler (4K-JT) that provides 4.5 K and the 2K Joule Thomson cooler (2K-JT) that provides 1.7 K, which serve as the precoolers of the multistage adiabatic demagnetization refrigerator (ADR). The 20K-class double-stage Stirling coolers (2ST) are also used as precoolers for the JT coolers and shield coolers. This paper presents a feasibility study of the mechanical cooler system and the status of these cooler developments. •A cryogen-free mechanical cooler system is proposed for the LiteBIRD payload module.•The 4K-JT provides 4.5 K and the 2K-JT provides 1.7 K.•The heat exchanger length is proposed based on the cooling performance test.•The heater control is needed at the 2K-JT cold tip and the 1.75 K stage to satisfy a required temperature stability.•The 2ST compressor was upgraded to prevent a mechanical wear and reduce a vibration levels.
ArticleNumber 104216
Author Dotani, Tadayasu
Tsunematsu, Shoji
Shinozaki, Keisuke
Fujimoto, Ryuichi
Yoshihara, Keisuke
Sekimoto, Yutaro
Yoshida, Seiji
Isshiki, Masahito
Kanao, Kenichi
Odagiri, Kimihide
Narasaki, Katsuhiro
Author_xml – sequence: 1
  givenname: Keisuke
  orcidid: 0000-0002-9613-2387
  surname: Shinozaki
  fullname: Shinozaki, Keisuke
  email: shinozaki.keisuke@jaxa.jp
  organization: Research and Development Directorate, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 2
  givenname: Kimihide
  surname: Odagiri
  fullname: Odagiri, Kimihide
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 3
  givenname: Keisuke
  surname: Yoshihara
  fullname: Yoshihara, Keisuke
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 4
  givenname: Yutaro
  surname: Sekimoto
  fullname: Sekimoto, Yutaro
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 5
  givenname: Tadayasu
  surname: Dotani
  fullname: Dotani, Tadayasu
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 6
  givenname: Ryuichi
  surname: Fujimoto
  fullname: Fujimoto, Ryuichi
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 7
  givenname: Katsuhiro
  surname: Narasaki
  fullname: Narasaki, Katsuhiro
  organization: Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
– sequence: 8
  givenname: Seiji
  surname: Yoshida
  fullname: Yoshida, Seiji
  organization: Sumitomo Heavy Industries, Ltd. Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
– sequence: 9
  givenname: Shoji
  surname: Tsunematsu
  fullname: Tsunematsu, Shoji
  organization: Sumitomo Heavy Industries, Ltd. Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
– sequence: 10
  givenname: Masahito
  surname: Isshiki
  fullname: Isshiki, Masahito
  organization: Sumitomo Heavy Industries, Ltd. Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
– sequence: 11
  givenname: Kenichi
  surname: Kanao
  fullname: Kanao, Kenichi
  organization: Sumitomo Heavy Industries, Ltd. Development section, Industrial Equipment Division, Niihama works, 5-2 Soubiraki-cho, Niihama, Ehime, 792-8588, Japan
BookMark eNqFj9FKwzAUhnMxwW36DnmBziRLk_ZGcNPpoCI4vQ7p6YnL6BpJqtC3t2OCl14d-A__x__NyKQLHRJCOVtwxtXNYQFxCB_YeUgLwUQ-xlJwNSFTxjjPhND5JZmldGBsfCgxJbcbtMnXvvX9QHf9VzPQ4Gi_R_qMsLcjybZ0HUKLke6G1OORuhBp5XtcbV_vr8iFs23C6987J--bh7f1U1a9PG7Xd1UGQuV9hlBozQqUXNaiKbXmSyhAl046ZyXUqKxTTQ2lAp2XY7yspSydKpjlomFqOSfFmQsxpBTRmc_ojzYOhjNzcjcH8-duTu7m7D5WV-cqjvu-PUaTwGMH2PiI0Jsm-P8hPyqNa1U
Cites_doi 10.1016/j.cryogenics.2004.02.012
10.1016/j.cryogenics.2008.03.003
10.1016/j.cryogenics.2021.103306
10.1016/j.cryogenics.2020.103133
10.1016/j.cryogenics.2014.04.022
10.1016/j.cryogenics.2015.10.017
10.1016/j.cryogenics.2022.103575
10.1016/j.cryogenics.2024.103831
10.1007/s10909-020-02371-z
10.1016/j.cryogenics.2020.103144
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
CorporateAuthor LiteBIRD Collaboration
CorporateAuthor_xml – name: LiteBIRD Collaboration
DBID AAYXX
CITATION
DOI 10.1016/j.cryogenics.2025.104216
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cryogenics_2025_104216
S001122752500195X
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9DU
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNEU
ABXRA
ACDAQ
ACFVG
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TAE
TN5
WH7
ZMT
~G-
~HD
29F
53G
5VS
6TJ
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
M24
M41
R2-
SMS
T9H
UHS
UQL
VOH
WUQ
ZXP
ZY4
ID FETCH-LOGICAL-c265t-ec87708e414b2d97713c8c79f4ffa4cbe6af6dbc96c7599f43b449f680a12d063
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001613365600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0011-2275
IngestDate Thu Nov 27 01:04:48 EST 2025
Sat Nov 29 17:08:07 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Joule Thomson
Stirling
Mechanical cooler
Cryogenics
LiteBIRD
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c265t-ec87708e414b2d97713c8c79f4ffa4cbe6af6dbc96c7599f43b449f680a12d063
ORCID 0000-0002-9613-2387
ParticipantIDs crossref_primary_10_1016_j_cryogenics_2025_104216
elsevier_sciencedirect_doi_10_1016_j_cryogenics_2025_104216
PublicationCentury 2000
PublicationDate 2025-12-15
PublicationDateYYYYMMDD 2025-12-15
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Cryogenics (Guildford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Otsuka, Kanao, Tsunematsu, Narasaki, Hiratsuka, Yamasaki, Mitsuda, Nakagawa, Shinozaki, Sato (bib0095) 2020; 111
Odagiri, Saijo, Shinozaki, Matsuda, Oguri, Suzuki, Ogawa, Sekimoto, Dotani, Watanuki, Sugimoto, Yoshihara, Narasaki, Isshiki, Yoshida, Prouve, Duval, Thompson (bib0010) 2022; 12180
Duval, Prouve, Shirron, Shinozaki, Sekimoto, Hasebe, Vermeulen, Andre, Hasumi, Montier, Mot (bib0025) 2020; 199
(bib0005) 2022
Brasiliano, Duval, Marin, Bichaud, Brison, Zhitomirsky, Luchier (bib0020) 2020; 105
Barbier, Carpentier, Butterworth, Martin, Charles, Duval, Fontani, Errico, Bartolo, Mullie, Rijks, Branco, Linder (bib0090) 2021; 21
Hirabayashi, Narasaki, Tsunematsu, Kimura, Yoshida, Murakami, Nakagawa, Ohnishi, Matsumoto, Kaneda (bib0055) 2008; 48
Sato, Tanaka, Sugita, Shinozaki, Sawada, Yamasaki, Nakagawa, Mitsuda, Tsunematsu, Ootsuka, Kanao, Narasaki (bib0040) 2021; 116
Sato, Sawada, Shinozaki, Sugita, Nishibori, Sato, Mitsuda, Yamasaki, Takei, Goto, Nakagawa, Fujimoto, Kikuchi, Murakami, Tsunematsu, Otsuka, Kanao, Narasaki (bib0035) 2014; 64
Sato, Sawada, Shinozaki, Sugita, Mitsuda, Yamasaki, Nakagawa, Tsunematsu, Otsuka, Narasaki (bib0045) 2016; 74
Yoshida, Isshiki, Kanao, Tsunematsu, Otsuka, Mizunuma, Takei, Hoshino, Fujimoto, Ezoe, Sato, DiPirro, Shirron (bib0060) 2024; 139
Narasaki, Tsunematsu, Ootsuka, Watanabe, Matsumoto, Murakami, Nakagawa, Sugita, Murakami, Awazu (bib0050) 2004; 44
Prouvé, Duval, Charles, Yamasaki, Mitsuda, Nakagawa, Shinozaki, Tokoku, Yamamoto, Minami, Du, Andre, Daniel, Linder (bib0080) 2020; 112
Duval, Duband, Attard (bib0085) 2015; vol 101
Tanaka, Sato, Tanaka, Shinozaki, Sugita, Yamasaki, Nakagawa, Mitsuda, Tsunematsu, Ootsuka, Kanao, Narasaki (bib0030) 2024; 23
Shinozaki, Tokoku, Yamamoto, Minami, Yamasaki, Mitsuda, Nakagawa, Duval, Prouve, Charles, Du, Andre, Daniel, Linder, Tsunematsu, Kanao, Otsuka, Narasaki (bib0075) 2019; 502
Shinozaki, Sato, Fukuoka, Tokoku, Nakagawa, Sugita, Tsunematsu, Kanao, Narasaki (bib0070) 2022; 128
Narasaki, Tsunematsu, Yajima, Okabayashi, Inatani, Kikuchi, Satoh, Manabe, Seta (bib0065) 2004; 49
Duval, Bancel, Charles, Durand, Leon, Lizion, Marin, Prouve (bib0015) 2024; 23
Sato (10.1016/j.cryogenics.2025.104216_bib0045) 2016; 74
Brasiliano (10.1016/j.cryogenics.2025.104216_bib0020) 2020; 105
Odagiri (10.1016/j.cryogenics.2025.104216_bib0010) 2022; 12180
Barbier (10.1016/j.cryogenics.2025.104216_bib0090) 2021; 21
Yoshida (10.1016/j.cryogenics.2025.104216_bib0060) 2024; 139
Duval (10.1016/j.cryogenics.2025.104216_bib0025) 2020; 199
Otsuka (10.1016/j.cryogenics.2025.104216_bib0095) 2020; 111
(10.1016/j.cryogenics.2025.104216_bib0005) 2022
Sato (10.1016/j.cryogenics.2025.104216_bib0035) 2014; 64
Narasaki (10.1016/j.cryogenics.2025.104216_bib0050) 2004; 44
Hirabayashi (10.1016/j.cryogenics.2025.104216_bib0055) 2008; 48
Narasaki (10.1016/j.cryogenics.2025.104216_bib0065) 2004; 49
Tanaka (10.1016/j.cryogenics.2025.104216_bib0030) 2024; 23
Shinozaki (10.1016/j.cryogenics.2025.104216_bib0075) 2019; 502
Duval (10.1016/j.cryogenics.2025.104216_bib0085) 2015; vol 101
Shinozaki (10.1016/j.cryogenics.2025.104216_bib0070) 2022; 128
Duval (10.1016/j.cryogenics.2025.104216_bib0015) 2024; 23
Prouvé (10.1016/j.cryogenics.2025.104216_bib0080) 2020; 112
Sato (10.1016/j.cryogenics.2025.104216_bib0040) 2021; 116
References_xml – volume: 64
  start-page: 182
  year: 2014
  end-page: 188
  ident: bib0035
  article-title: Development status of the mechanical cryocoolers for the soft x-ray spectrometer on board astro-H
  publication-title: Cryogenics
– volume: 502
  year: 2019
  ident: bib0075
  article-title: Cooling performance of joule thomson coolers in 300 K -50 mK cryochain demonstration for ATHENA X-IFU
  publication-title: IOP Conference Series: Journal of Physics
– volume: 199
  start-page: 730
  year: 2020
  end-page: 736
  ident: bib0025
  article-title: LiteBIRD cryogenic chain: 100mk cooling with mechanical coolers and ADRs
  publication-title: Journal of Low Temperature Physics
– volume: 49
  start-page: 1785
  year: 2004
  end-page: 1796
  ident: bib0065
  article-title: Development of cryogenic system for smiles
  publication-title: American Institute of Physics, of in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference - CEC
– volume: 12180
  year: 2022
  ident: bib0010
  article-title: Cryogenic thermal design and analysis for liteBIRD payload module
  publication-title: Proc. SPIE, 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave
– volume: 139
  year: 2024
  ident: bib0060
  article-title: Performance test results of a helium dewar for the resolve instrument onboard the XRISM
  publication-title: Cryogenics
– volume: 23
  start-page: 323
  year: 2024
  end-page: 331
  ident: bib0015
  article-title: 5-stage ADR cooler for the athena space mission: design and preliminary characterization
  publication-title: Cryocoolers
– volume: 111
  year: 2020
  ident: bib0095
  article-title: Improvement of micro-vibration of a two-stage stirling cryocooler
  publication-title: Cryogenics
– volume: 116
  year: 2021
  ident: bib0040
  article-title: Lifetime test of the 4K joule-thomson cryocooler
  publication-title: Cryogenics
– volume: 74
  start-page: 47
  year: 2016
  end-page: 54
  ident: bib0045
  article-title: Development of 1K-class Joule-Thomson cryocooler for next-generation astronomical mission
  publication-title: Cryogenics
– volume: 21
  start-page: 23
  year: 2021
  end-page: 28
  ident: bib0090
  publication-title: Enabling Ambitious Space Science Missions Thanks to 10K–20K Cryocooling
– year: 2022
  ident: bib0005
  article-title: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
  publication-title: Progress of Theoretical and Experimental Physics
– volume: 128
  year: 2022
  ident: bib0070
  article-title: Cooling performance of joule thomson coolers with straight heat exchangers for space science missions
  publication-title: Cryogenics
– volume: 23
  start-page: 57
  year: 2024
  end-page: 62
  ident: bib0030
  article-title: Reliability enhancement of the double-stage stirling cooler for space science missions
  publication-title: Cryocoolers
– volume: 112
  year: 2020
  ident: bib0080
  article-title: ATHENA X-IFU 300K - 50mK cryochain test results
  publication-title: Cryogenics
– volume: 44
  start-page: 375
  year: 2004
  end-page: 381
  ident: bib0050
  article-title: Development of 1K-class mechanical cooler for SPICA
  publication-title: Cryogenics
– volume: vol 101
  year: 2015
  ident: bib0085
  article-title: Qualification campaign of the 50mK hybrid sorption-ADR cooler for SPICA/SAFARI
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 105
  year: 2020
  ident: bib0020
  article-title: YbGG material for adiabatic demagnetization in the 100 mK-3 K range
  publication-title: Cryogenics
– volume: 48
  start-page: 189
  year: 2008
  end-page: 197
  ident: bib0055
  article-title: Thermal design and its on-orbit performance of the AKARI cryostat
  publication-title: Cryogenics
– volume: 44
  start-page: 375
  year: 2004
  ident: 10.1016/j.cryogenics.2025.104216_bib0050
  article-title: Development of 1K-class mechanical cooler for SPICA
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2004.02.012
– volume: 21
  start-page: 23
  year: 2021
  ident: 10.1016/j.cryogenics.2025.104216_bib0090
– volume: 48
  start-page: 189
  year: 2008
  ident: 10.1016/j.cryogenics.2025.104216_bib0055
  article-title: Thermal design and its on-orbit performance of the AKARI cryostat
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2008.03.003
– volume: 116
  year: 2021
  ident: 10.1016/j.cryogenics.2025.104216_bib0040
  article-title: Lifetime test of the 4K joule-thomson cryocooler
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2021.103306
– volume: vol 101
  year: 2015
  ident: 10.1016/j.cryogenics.2025.104216_bib0085
  article-title: Qualification campaign of the 50mK hybrid sorption-ADR cooler for SPICA/SAFARI
– volume: 111
  year: 2020
  ident: 10.1016/j.cryogenics.2025.104216_bib0095
  article-title: Improvement of micro-vibration of a two-stage stirling cryocooler
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2020.103133
– volume: 49
  start-page: 1785
  year: 2004
  ident: 10.1016/j.cryogenics.2025.104216_bib0065
  article-title: Development of cryogenic system for smiles
– volume: 12180
  year: 2022
  ident: 10.1016/j.cryogenics.2025.104216_bib0010
  article-title: Cryogenic thermal design and analysis for liteBIRD payload module
– volume: 64
  start-page: 182
  year: 2014
  ident: 10.1016/j.cryogenics.2025.104216_bib0035
  article-title: Development status of the mechanical cryocoolers for the soft x-ray spectrometer on board astro-H
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2014.04.022
– volume: 74
  start-page: 47
  year: 2016
  ident: 10.1016/j.cryogenics.2025.104216_bib0045
  article-title: Development of 1K-class Joule-Thomson cryocooler for next-generation astronomical mission
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2015.10.017
– volume: 105
  year: 2020
  ident: 10.1016/j.cryogenics.2025.104216_bib0020
  article-title: YbGG material for adiabatic demagnetization in the 100 mK-3 K range
  publication-title: Cryogenics
– volume: 128
  year: 2022
  ident: 10.1016/j.cryogenics.2025.104216_bib0070
  article-title: Cooling performance of joule thomson coolers with straight heat exchangers for space science missions
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2022.103575
– volume: 139
  year: 2024
  ident: 10.1016/j.cryogenics.2025.104216_bib0060
  article-title: Performance test results of a helium dewar for the resolve instrument onboard the XRISM
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2024.103831
– volume: 23
  start-page: 57
  year: 2024
  ident: 10.1016/j.cryogenics.2025.104216_bib0030
  article-title: Reliability enhancement of the double-stage stirling cooler for space science missions
  publication-title: Cryocoolers
– volume: 502
  year: 2019
  ident: 10.1016/j.cryogenics.2025.104216_bib0075
  article-title: Cooling performance of joule thomson coolers in 300 K -50 mK cryochain demonstration for ATHENA X-IFU
– year: 2022
  ident: 10.1016/j.cryogenics.2025.104216_bib0005
  article-title: Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey
  publication-title: Progress of Theoretical and Experimental Physics
– volume: 23
  start-page: 323
  year: 2024
  ident: 10.1016/j.cryogenics.2025.104216_bib0015
  article-title: 5-stage ADR cooler for the athena space mission: design and preliminary characterization
  publication-title: Cryocoolers
– volume: 199
  start-page: 730
  year: 2020
  ident: 10.1016/j.cryogenics.2025.104216_bib0025
  article-title: LiteBIRD cryogenic chain: 100mk cooling with mechanical coolers and ADRs
  publication-title: Journal of Low Temperature Physics
  doi: 10.1007/s10909-020-02371-z
– volume: 112
  year: 2020
  ident: 10.1016/j.cryogenics.2025.104216_bib0080
  article-title: ATHENA X-IFU 300K - 50mK cryochain test results
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2020.103144
SSID ssj0004262
Score 2.4056177
Snippet LiteBIRD is the second strategic large-class mission of JAXA aiming to test inflation models. In this mission, cryogenic telescopes and low-temperature...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104216
SubjectTerms Cryogenics
Joule Thomson
LiteBIRD
Mechanical cooler
Stirling
Title Feasibility Study of the Mechanical Cooler System for LiteBIRD
URI https://dx.doi.org/10.1016/j.cryogenics.2025.104216
Volume 152
WOSCitedRecordID wos001613365600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0011-2275
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004262
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVpu4f2YXRby9K1Qw99dbAV-YvCoCsd67J1g3QjezKSLC1uU7s4SWn663dlyXa2BboV9mKMQR_WPVxdXc49QuiQuErK2BWOCj3qUOH3HR6lzFGuUqnyFU2rfMe3j-H5eTQaxV86nUVdC3M7CfM8uruLb_6rqeEbGFuXzv6DuZtO4QO8g9HhCWaH518ZHoI6S3ldVCzBRU0D-CR1lW9llJOimMjSypVXTEMtnvH2zJ7Fa-WCclHAMFrHWScT9AXahgrfJA-G4ywv7pm5-nogs-n8qgHK55T9yEwd-yC7zsZZKlsXMx1nWil6RbOhvNLwqTK43-czVhbLiQnia5KHKc2sna3nOYSYi1EaZ2v0aq27hLMgMaWWf3hyk1S47InmV3t6kF7b5Ffx7N82tYZqWLPYLpO2p0T3lJie1tAGTDEGh7hxfHY6-tAW1ZLASM3bv7A0MEMOXD2r1bHNUrxysY2e2oMGPjYAeYY6Mn-OtpbkJ1-gN0tQwRVUcKEwQAW3UMEGKthABYP9cQ2VHfT13enFyXvH3qfhCBL4M0eKKAzdSFKPcpJC4O_1RSTCWFGlGBVcBkwFKRdxIPSKKNrnlMYqiFzmkRRi2V20nhe5fIlwyJXPKewPnEDAzWLGKJEMomEW-EJy3kVevRLJjZFNSR6yRBcd1UuW2PDPhHUJYOLB1nuPGPEV2myBu4_WZ-VcHqAn4naWTcvXFhA_ASohghA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+Study+of+the+Mechanical+Cooler+System+for+LiteBIRD&rft.jtitle=Cryogenics+%28Guildford%29&rft.au=Shinozaki%2C+Keisuke&rft.au=Odagiri%2C+Kimihide&rft.au=Yoshihara%2C+Keisuke&rft.au=Sekimoto%2C+Yutaro&rft.date=2025-12-15&rft.issn=0011-2275&rft.volume=152&rft.spage=104216&rft_id=info:doi/10.1016%2Fj.cryogenics.2025.104216&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cryogenics_2025_104216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-2275&client=summon