Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k -Nearest Neighbor Scheme

Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we propose a stereovision-based method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal Vol. 18; no. 12; pp. 5122 - 5132
Main Authors: Dairi, Abdelkader, Harrou, Fouzi, Ying Sun, Senouci, Mohamed
Format: Journal Article
Language:English
Published: IEEE 15.06.2018
Subjects:
ISSN:1530-437X, 1558-1748
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we propose a stereovision-based method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k -nearest neighbors (KNN) algorithm to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available data sets, the Malaga stereovision urban data set, the Daimler urban segmentation data set, and the Bahnhof data set. Also, we compared the efficiency of DSA-KNN approach to the deep belief network-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.
AbstractList Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we propose a stereovision-based method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k -nearest neighbors (KNN) algorithm to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available data sets, the Malaga stereovision urban data set, the Daimler urban segmentation data set, and the Bahnhof data set. Also, we compared the efficiency of DSA-KNN approach to the deep belief network-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.
Author Ying Sun
Dairi, Abdelkader
Senouci, Mohamed
Harrou, Fouzi
Author_xml – sequence: 1
  givenname: Abdelkader
  surname: Dairi
  fullname: Dairi, Abdelkader
  email: dairi.aek@gmail.com
  organization: Comput. Sci. Dept., Univ. of Oran 1 Ahmed Ben Bella, Oran, Algeria
– sequence: 2
  givenname: Fouzi
  surname: Harrou
  fullname: Harrou, Fouzi
  email: fouzi.harrou@kaust.edu.sa
  organization: Electr. & Math. Sci. & Eng. Div., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
– sequence: 3
  surname: Ying Sun
  fullname: Ying Sun
  organization: Electr. & Math. Sci. & Eng. Div., King Abdullah Univ. of Sci. & Technol., Thuwal, Saudi Arabia
– sequence: 4
  givenname: Mohamed
  surname: Senouci
  fullname: Senouci, Mohamed
  organization: Comput. Sci. Dept., Univ. of Oran 1 Ahmed Ben Bella, Oran, Algeria
BookMark eNp9kNFOwjAUhhuDiYA-gPGmLzBs13UtlwRRMQQuBol3S9edQWV0pK0xvL2bEC-88Or8ycn3n5xvgHq2sYDQPSUjSsn48S2bLUcxoXIUS0aJjK9Qn3IuIyoS2esyI1HCxPsNGnj_QQgdCy766GtV-KB0DfgJAuhgGourxuG5DVDXZgs24LVT1h8bF9TPOjv5AAePN97YbYvBEWdtxR5KPPkMDVjdlOCwsiXe42gJyoEPeAlmuyva5kzv4AC36LpStYe7yxyizfNsPX2NFquX-XSyiHSc8hAppnkFZUVYmYCiXKZac17ohKg0FYpTXspYjTWNgVMiGCNlpVMYJ1IIXWjJhoiee7VrvHdQ5UdnDsqdckryzlzemcs7c_nFXMuIP4w259-DU6b-l3w4kwYAfi9JxmNJKPsGd-WAAw
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_TITS_2021_3090338
crossref_primary_10_1016_j_knosys_2024_112679
crossref_primary_10_1007_s10479_023_05418_y
crossref_primary_10_1109_ACCESS_2024_3424488
crossref_primary_10_1109_JSEN_2021_3118365
crossref_primary_10_1109_TGRS_2020_2984951
crossref_primary_10_1080_1206212X_2020_1758877
crossref_primary_10_3390_app10238400
crossref_primary_10_1016_j_jestch_2023_101455
crossref_primary_10_1016_j_jksuci_2021_07_020
crossref_primary_10_1080_01969722_2025_2520823
crossref_primary_10_1109_JSEN_2024_3418618
crossref_primary_10_1109_JSTARS_2020_3042760
crossref_primary_10_1016_j_engappai_2021_104199
crossref_primary_10_1109_JSEN_2020_3025613
crossref_primary_10_1016_j_jbi_2021_103791
crossref_primary_10_1016_j_engappai_2024_108856
crossref_primary_10_1016_j_compeleceng_2024_109984
crossref_primary_10_1109_JSEN_2018_2865306
crossref_primary_10_1109_JSEN_2024_3375913
crossref_primary_10_1109_JSEN_2019_2936520
crossref_primary_10_1016_j_measurement_2020_107534
crossref_primary_10_1016_j_measurement_2021_109337
crossref_primary_10_1109_JSEN_2018_2879187
crossref_primary_10_1007_s10586_021_03426_w
crossref_primary_10_1007_s42979_024_02603_z
crossref_primary_10_1007_s12083_020_00993_4
crossref_primary_10_1016_j_ifacol_2023_10_799
crossref_primary_10_1109_ACCESS_2020_2989870
crossref_primary_10_4018_IJCVIP_301605
crossref_primary_10_1049_itr2_12085
crossref_primary_10_1016_j_rineng_2025_106132
crossref_primary_10_1016_j_ssci_2021_105479
crossref_primary_10_3390_s23062938
crossref_primary_10_1109_JSEN_2021_3114214
crossref_primary_10_1016_j_vehcom_2023_100586
crossref_primary_10_1109_MIM_2024_10423660
crossref_primary_10_1088_2632_2153_abd51d
crossref_primary_10_1109_JIOT_2020_2992349
crossref_primary_10_1109_JSEN_2018_2875954
crossref_primary_10_1109_JSEN_2022_3227012
crossref_primary_10_3390_app10082749
crossref_primary_10_1016_j_knosys_2021_107391
crossref_primary_10_1109_TASE_2025_3596630
crossref_primary_10_1109_JSEN_2020_3030030
crossref_primary_10_1016_j_cose_2024_104188
crossref_primary_10_1088_1361_6501_abfdde
crossref_primary_10_1109_TITS_2020_2980864
crossref_primary_10_1016_j_applthermaleng_2025_127138
crossref_primary_10_1016_j_scs_2018_12_039
crossref_primary_10_1109_JSEN_2018_2886368
Cites_doi 10.1016/j.robot.2006.05.011
10.1109/IVS.2005.1505076
10.1016/j.micpro.2007.10.002
10.1109/IVS.2006.1689643
10.1109/CVPR.2012.6248017
10.1109/IVS.2010.5548114
10.1109/ICRA.2014.6907325
10.1109/34.1000236
10.1016/j.rcim.2015.09.006
10.1007/s10115-007-0114-2
10.1561/2200000006
10.1109/TITS.2016.2614818
10.1145/1390156.1390294
10.1016/j.tics.2007.09.004
10.1007/978-3-319-27702-8_15
10.1109/TSM.2007.907607
10.1016/j.robot.2017.04.001
10.1109/JSEN.2006.888583
10.1109/TPAMI.2012.277
10.1016/j.robot.2016.06.007
10.1007/978-3-642-40602-7_46
10.1109/JSEN.2014.2354987
10.1126/science.1136800
10.1007/s11222-007-9033-z
10.1145/235968.233324
10.1109/IVS.2013.6629641
10.1111/j.2517-6161.1977.tb01600.x
10.1109/ICARCV.2014.7064455
10.1016/j.trc.2007.06.005
10.5772/56603
10.1109/JSEN.2015.2490247
10.1109/JSEN.2016.2531122
10.1177/0278364913507326
10.1109/JSEN.2011.2169782
10.3390/s16081182
10.1007/978-3-319-10602-1_35
10.1109/ROBOT.2009.5152884
10.1007/978-3-319-49409-8_6
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2018.2831082
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 5132
ExternalDocumentID 10_1109_JSEN_2018_2831082
8352801
Genre orig-research
GrantInformation_xml – fundername: King Abdullah University of Science and Technology Office of Sponsored Research
  grantid: OSR-2015-CRG4-2582
  funderid: 10.13039/501100004052
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-a3c5fedf03d4ea1586cc55bc40a667a515d82a9c12e5107330dfc6e94877cbc83
IEDL.DBID RIE
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433384300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Nov 18 21:14:42 EST 2025
Sat Nov 29 07:48:03 EST 2025
Wed Aug 27 03:06:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-a3c5fedf03d4ea1586cc55bc40a667a515d82a9c12e5107330dfc6e94877cbc83
ORCID 0000-0001-6703-4270
0000-0003-4712-6949
0000-0002-2138-319X
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2018_2831082
crossref_citationtrail_10_1109_JSEN_2018_2831082
ieee_primary_8352801
PublicationCentury 2000
PublicationDate 2018-June15,-15
2018-6-15
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ap (ref44) 2014
ref15
labayrade (ref28) 2003
ref14
ref52
ref11
ref54
ref10
vincent (ref41) 2010; 11
ref17
ref16
ref19
ref18
appiah (ref5) 2015
krizhevsky (ref53) 2012
omohundro (ref32) 1989
jain (ref39) 1988
ref51
montgomery (ref48) 2009
ref50
ref46
ref45
ref47
duguleana (ref22) 2012; 28
ramos (ref25) 2016
dempster (ref35) 1977; 39
ref49
ref7
ref9
ref4
ref3
ref6
hu (ref29) 2005
ref40
krizhevsky (ref42) 2011
ref34
bengio (ref23) 2007; 34
ref37
ref36
ref31
ref30
ref2
lu (ref43) 2013
arthur (ref33) 2007
ref38
del (ref8) 2006; 54
ref24
ref26
ref20
ref21
ref27
labayrade (ref1) 2002; 2
References_xml – volume: 54
  start-page: 967
  year: 2006
  ident: ref8
  article-title: A sonar approach to obstacle detection for a vision-based autonomous wheelchair
  publication-title: Robot Auto Syst
  doi: 10.1016/j.robot.2006.05.011
– ident: ref47
  doi: 10.1109/IVS.2005.1505076
– year: 1988
  ident: ref39
  publication-title: Algorithms for clustering data
– ident: ref46
  doi: 10.1016/j.micpro.2007.10.002
– ident: ref16
  doi: 10.1109/IVS.2006.1689643
– start-page: 1097
  year: 2012
  ident: ref53
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/CVPR.2012.6248017
– year: 1989
  ident: ref32
  publication-title: Five balltree construction algorithms
– ident: ref18
  doi: 10.1109/IVS.2010.5548114
– start-page: 1853
  year: 2014
  ident: ref44
  article-title: An autoencoder approach to learning bilingual word representations
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1109/ICRA.2014.6907325
– ident: ref34
  doi: 10.1109/34.1000236
– ident: ref21
  doi: 10.1016/j.rcim.2015.09.006
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref41
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1007/s10115-007-0114-2
– ident: ref27
  doi: 10.1561/2200000006
– ident: ref24
  doi: 10.1109/TITS.2016.2614818
– ident: ref40
  doi: 10.1145/1390156.1390294
– start-page: 48
  year: 2005
  ident: ref29
  article-title: UV-disparity: An efficient algorithm for stereovision based scene analysis
  publication-title: Proc Intell Vehicles Symp
– year: 2009
  ident: ref48
  publication-title: Introduction to Statistical Quality Control
– ident: ref26
  doi: 10.1016/j.tics.2007.09.004
– volume: 2
  start-page: 646
  year: 2002
  ident: ref1
  article-title: Real time obstacle detection in stereovision on non flat road geometry through 'v-disparity' representation
  publication-title: Proc IEEE Intell Vehicle Symp
– ident: ref9
  doi: 10.1007/978-3-319-27702-8_15
– start-page: 1
  year: 2011
  ident: ref42
  article-title: Using very deep autoencoders for content-based image retrieval
  publication-title: Proc ESANN
– ident: ref30
  doi: 10.1109/TSM.2007.907607
– ident: ref7
  doi: 10.1016/j.robot.2017.04.001
– ident: ref14
  doi: 10.1109/JSEN.2006.888583
– ident: ref45
  doi: 10.1109/TPAMI.2012.277
– year: 2016
  ident: ref25
  publication-title: Detecting unexpected obstacles for self-driving cars Fusing deep learning and geometric modeling
– ident: ref10
  doi: 10.1016/j.robot.2016.06.007
– ident: ref50
  doi: 10.1007/978-3-642-40602-7_46
– ident: ref13
  doi: 10.1109/JSEN.2014.2354987
– ident: ref38
  doi: 10.1126/science.1136800
– volume: 28
  start-page: 132
  year: 2012
  ident: ref22
  article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
  publication-title: Robot Comput -Integr Manuf
– year: 2015
  ident: ref5
  article-title: Obstacle detection using stereo vision for self-driving cars
– ident: ref37
  doi: 10.1007/s11222-007-9033-z
– start-page: 1
  year: 2003
  ident: ref28
  article-title: In-vehicle obstacles detection and characterization by stereovision
  publication-title: Proc 1st Int Workshop In-Vehicle Cognit Comput Vis Syst
– ident: ref36
  doi: 10.1145/235968.233324
– ident: ref3
  doi: 10.1109/IVS.2013.6629641
– volume: 39
  start-page: 1
  year: 1977
  ident: ref35
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref20
  doi: 10.1109/ICARCV.2014.7064455
– ident: ref54
  doi: 10.1016/j.trc.2007.06.005
– ident: ref4
  doi: 10.5772/56603
– ident: ref12
  doi: 10.1109/JSEN.2015.2490247
– start-page: 1027
  year: 2007
  ident: ref33
  article-title: k-means++: The advantages of careful seeding
  publication-title: Proc 18th Annu ACM-SIAM Symp Discrete Algorithms
– ident: ref15
  doi: 10.1109/JSEN.2016.2531122
– ident: ref49
  doi: 10.1177/0278364913507326
– ident: ref11
  doi: 10.1109/JSEN.2011.2169782
– ident: ref19
  doi: 10.3390/s16081182
– ident: ref51
  doi: 10.1007/978-3-319-10602-1_35
– volume: 34
  start-page: 1
  year: 2007
  ident: ref23
  article-title: Scaling learning algorithms towards AI
  publication-title: Large Scale Kernel Machines
– ident: ref52
  doi: 10.1109/ROBOT.2009.5152884
– start-page: 436
  year: 2013
  ident: ref43
  article-title: Speech enhancement based on deep denoising autoencoder
  publication-title: Proc INTERSPEECH
– ident: ref2
  doi: 10.1007/978-3-319-49409-8_6
SSID ssj0019757
Score 2.4737406
Snippet Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5122
SubjectTerms autonomous vehicles
Clustering algorithms
deep learning
intelligent transportation systems
Kernel
Machine learning
Machine learning algorithms
Obstacle detection
Partitioning algorithms
Roads
Sensors
Title Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k -Nearest Neighbor Scheme
URI https://ieeexplore.ieee.org/document/8352801
Volume 18
WOSCitedRecordID wos000433384300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA0qgnrwW1y_yMGTmDVNP5IeRVfUQxVU2FtJkymK2l12u4r_3ky2FgURvJUyA6VvQl6SyXuEHApXs8IawbiJgUUGSlaU3DLQrpq0KorURN5sQmaZ6vfT2xly3N6FAQDffAZdfPRn-XZgJrhVdoJsQeFlrVkpk-ldrfbEIJVe1dMNYM6iUPabE8yApyfXd70Mm7hUV6CtlhI_5qBvpip-TrlY-d_XrJLlhjvS0ynYa2QGqnWy9E1RcJ0sNKbmjx8b5P2mcNTPRdJzqH3HVUUdRaVXrQpnTVttcw8QbfTLqW8kcGkwpI6NuoFu6emkHqDopYUR1ZWlz5RlqH87rmmG26uuluidq4BX2CQPF737s0vW-CwwI5K4ZjrEljNb8tBGoINYJcbEcWEirpNEasd4rBI6NYEAN4JlGHJbmgRSt9aRpjAq3CJz1aCCbUIlhGVgYlXGsow4FDpEIyTHIVUkAquKDuFffz43jQg5emG85H4xwtMcwcoRrLwBq0OO2pThVIHjr-ANBKoNbDDa-f31LlnEZOz8CuI9MlePJrBP5s1b_TQeHfj6-gRa0c7-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFD6IG7g9bP6YTDddHvYki6Zp0qaPsik6XTfQwX0raXKKovZerr2K__1ycruiIIO9lZKE0u-EfEnO-T6AzzLErPROcuE0cuWw4XUjPEcbosmaui6cimYTeVma0aj4tQBfhloYRIzJZ7hLj_Eu34_djI7K9ogtGCrWeqGVkmJerTXcGRR51PUMU1hwleaj_g4zEcXe97ODktK4zK4kYy0jn6xCj2xV4qpy-Pb_vmcZ3vTske3P4V6BBWxX4fUjTcFVWOptzS8e1uD-Zx3IX2jJvmEXc65aFkgqOx50ODs2qJtHiFivYM5iKkHohhMW-GiY6p7tz7oxyV56nDLbenbFeEkKuLcdK-mANUQTOwsxcIPv4PfhwfnXI947LXAnM91xm1LSmW9E6hXaRJvMOa1rp4TNstwGzuONtIVLJIY5nKep8I3LsAi7ndzVzqTrsNiOW3wPLMe0SZw2jc4bJbC2KVkhBRZplEy8qTdA_P3zletlyMkN47qK2xFRVARWRWBVPVgbsDN0mcw1OP7VeI2AGhr2GG0-__oTLB2d_zitTo_Lkw_wigaiPLBEf4TFbjrDLXjp7rrL2-l2jLU_R1jSRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Obstacle+Detection+for+Intelligent+Transportation+Systems+Using+Deep+Stacked+Autoencoder+and+k+-Nearest+Neighbor+Scheme&rft.jtitle=IEEE+sensors+journal&rft.au=Dairi%2C+Abdelkader&rft.au=Harrou%2C+Fouzi&rft.au=Ying+Sun&rft.au=Senouci%2C+Mohamed&rft.date=2018-06-15&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=18&rft.issue=12&rft.spage=5122&rft.epage=5132&rft_id=info:doi/10.1109%2FJSEN.2018.2831082&rft.externalDocID=8352801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon