An improved newton metaheuristic algorithm for design optimization of steel moment-resisting frames

•Introducing an Improved Newton Metaheuristic Algorithm (INMA).•Demonstrating the superior performance of INMA over existing algorithms through benchmark design examples and performance-based design optimization problems of steel moment-resisting frames.•Requiring fewer structural analyses and exhib...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in engineering software (1992) Ročník 207; s. 103960
Hlavní autoři: Zaerreza, Ataollah, Gholizadeh, Saeed, Mohammadi, Mirali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2025
Témata:
ISSN:0965-9978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Introducing an Improved Newton Metaheuristic Algorithm (INMA).•Demonstrating the superior performance of INMA over existing algorithms through benchmark design examples and performance-based design optimization problems of steel moment-resisting frames.•Requiring fewer structural analyses and exhibiting faster convergence rates compared to other metaheuristic methods.•Confirming the reliability and potential of the INMA as a powerful tool for tackling complex structural optimization problems. This paper proposes an improved Newton metaheuristic algorithm (INMA) for solving steel moment resisting frame optimization problems. The proposed INMA uses a novel initialization scheme that produces an efficient initial population that is significantly better than a randomly generated initial population for structural optimization problems. The efficiency of the algorithm is further improved by the implementation of a statistical regeneration mechanism. The effectiveness of the INMA is initially demonstrated through two benchmark optimization problems involving steel moment-resisting frames. Furthermore, the performance of the INMA is evaluated to address the performance-based design optimization problem of steel moment-resisting frames. Due to the potentially extensive computational time of the performance-based design optimization process, a nonlinear static pushover analysis is performed to determine structural responses at various seismic performance levels. The numerical results indicate that the INMA outperforms other algorithms in the literature.
ISSN:0965-9978
DOI:10.1016/j.advengsoft.2025.103960