Delay-Guaranteed Cross-Layer Scheduling in Multihop Wireless Networks
In this paper, we propose a cross-layer scheduling algorithm that achieves a throughput " ε-close" to the optimal throughput in multihop wireless networks with a tradeoff of O([1/(ε)]) in average end-to-end delay guarantees. The algorithm guarantees finite buffer sizes and aims to solve a...
Gespeichert in:
| Veröffentlicht in: | IEEE/ACM transactions on networking Jg. 21; H. 6; S. 1696 - 1707 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2013
|
| Schlagworte: | |
| ISSN: | 1063-6692, 1558-2566 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we propose a cross-layer scheduling algorithm that achieves a throughput " ε-close" to the optimal throughput in multihop wireless networks with a tradeoff of O([1/(ε)]) in average end-to-end delay guarantees. The algorithm guarantees finite buffer sizes and aims to solve a joint congestion control, routing, and scheduling problem in a multihop wireless network while satisfying per-flow average end-to-end delay constraints and minimum data rate requirements. This problem has been solved for both backlogged as well as arbitrary arrival rate systems. Moreover, we discuss the design of a class of low-complexity suboptimal algorithms, effects of delayed feedback on the optimal algorithm, and extensions of the proposed algorithm to different interference models with arbitrary link capacities. |
|---|---|
| ISSN: | 1063-6692 1558-2566 |
| DOI: | 10.1109/TNET.2012.2230404 |