A Set-Based Genetic Algorithm for Interval Many-Objective Optimization Problems
Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous in real-world applications. However, there have been very few effective methods for solving these problems. In this paper, we proposed a set...
Uloženo v:
| Vydáno v: | IEEE transactions on evolutionary computation Ročník 22; číslo 1; s. 47 - 60 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.2018
|
| Témata: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous in real-world applications. However, there have been very few effective methods for solving these problems. In this paper, we proposed a set-based genetic algorithm to effectively solve them. The original optimization problem was first transformed into a deterministic bi-objective problem, where new objectives are hyper-volume and imprecision. A set-based Pareto dominance relation was then defined to modify the fast nondominated sorting approach in NSGA-II. Additionally, set-based evolutionary schemes were suggested. Finally, our method was empirically evaluated on 39 benchmark IMaOPs as well as a car cab design problem and compared with two typical methods. The numerical results demonstrated the superiority of our method and indicated that a tradeoff approximate front between convergence and uncertainty can be produced. |
|---|---|
| ISSN: | 1089-778X 1941-0026 |
| DOI: | 10.1109/TEVC.2016.2634625 |