Fast Implementation of FDTD-Compatible Green's Function on Multicore Processor

In this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters Jg. 11; S. 81 - 84
1. Verfasser: Stefanski, T. P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2012
Schlagworte:
ISSN:1536-1225, 1548-5757
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, numerically efficient implementation of the finite-difference time domain (FDTD)-compatible Green's function on a multicore processor is presented. Recently, closed-form expression of this discrete Green's function (DGF) was derived, which simplifies its application in the FDTD simulations of radiation and scattering problems. Unfortunately, the new DGF expression involves binomial coefficients, whose computations may cause long runtimes and numerical problems. The proposed fast implementation of the DGF is based on the multiple precision arithmetic and employs a common programming language extended with the OpenMP parallel programming interface. As a result, the speedup factor of three orders of magnitude compared to the previous implementation was obtained, thus applicability of the DGF in FDTD simulations was significantly improved.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2012.2183632