Convergence Estimates for a Locally One-Dimensional Finite Difference Scheme for Parabolic Initial-Boundary Value Problems
Error estimates for a locally one-dimensional finite difference scheme for parabolic initial-boundary value problems are presented. Techniques from Bramble, Hubbard and Thomee [1] are applied to a method proposed by Samarskii [5]. It is shown that if the right-hand side of the differential equation...
Gespeichert in:
| Veröffentlicht in: | SIAM journal on numerical analysis Jg. 13; H. 4; S. 514 - 519 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia
Society for Industrial and Applied Mathematics
01.09.1976
|
| Schlagworte: | |
| ISSN: | 0036-1429, 1095-7170 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Error estimates for a locally one-dimensional finite difference scheme for parabolic initial-boundary value problems are presented. Techniques from Bramble, Hubbard and Thomee [1] are applied to a method proposed by Samarskii [5]. It is shown that if the right-hand side of the differential equation has "smoothness" λ for 1 ≤ λ ≤ 2 and the initial and boundary data have "smoothness" μ where 0 ≤ μ ≤ 4 then the truncation error is bounded by C{hλ|f|(λ)L + hμ/2|(φ, Φ)|(μ)R × ∂L}. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0713044 |