Soft-Output Successive Cancellation List Decoding

We introduce an algorithm for approximating the codebook probability that is compatible with all successive cancellation (SC)-based decoding algorithms, including SC list (SCL) decoding. This approximation is based on an auxiliary distribution that mimics the dynamics of decoding algorithms with an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 71; číslo 2; s. 1007 - 1017
Hlavní autoři: Yuan, Peihong, Duffy, Ken R., Medard, Muriel
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.2025
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce an algorithm for approximating the codebook probability that is compatible with all successive cancellation (SC)-based decoding algorithms, including SC list (SCL) decoding. This approximation is based on an auxiliary distribution that mimics the dynamics of decoding algorithms with an SC decoding schedule. Based on this codebook probability and SCL decoding, we introduce soft-output SCL (SO-SCL) to generate both blockwise and bitwise soft-output (SO). Using that blockwise SO, we first establish that, in terms of both block error rate (BLER) and undetected error rate (UER), SO-SCL decoding of dynamic Reed-Muller (RM) codes significantly outperforms the CRC-concatenated polar codes from 5G New Radio under SCL decoding. Moreover, using SO-SCL, the decoding misdetection rate (MDR) can be constrained to not exceed any predefined value, making it suitable for practical systems. Proposed bitwise SO can be readily generated from blockwise SO via a weighted sum of beliefs that includes a term where SO is weighted by the codebook probability, resulting in a soft-input soft-output (SISO) decoder. Simulation results for SO-SCL iterative decoding of product codes and generalized LDPC (GLDPC) codes, along with information-theoretical analysis, demonstrate significant superiority over existing list-max and list-sum approximations.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3512412