Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation

Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 9; no. 12; pp. 11841 - 11848
Main Authors: Gummadi, Shreya, Gasparino, Mateus V., Vasisht, Deepak, Chowdhary, Girish
Format: Journal Article
Language:English
Published: IEEE 01.12.2024
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster.
AbstractList Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster.
Author Chowdhary, Girish
Gasparino, Mateus V.
Gummadi, Shreya
Vasisht, Deepak
Author_xml – sequence: 1
  givenname: Shreya
  orcidid: 0009-0002-1640-7617
  surname: Gummadi
  fullname: Gummadi, Shreya
  email: gummadi4@illinois.edu
  organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: Mateus V.
  orcidid: 0000-0001-7900-8061
  surname: Gasparino
  fullname: Gasparino, Mateus V.
  organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 3
  givenname: Deepak
  orcidid: 0000-0003-3826-0978
  surname: Vasisht
  fullname: Vasisht, Deepak
  organization: Siebel School of Computing and Data Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 4
  givenname: Girish
  orcidid: 0000-0002-4657-307X
  surname: Chowdhary
  fullname: Chowdhary, Girish
  organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA
BookMark eNp9kD1PwzAQhi1UJErpzsDgP5DijyRO2NqoBaQIpKpijS6JXYxSG9kOiH_flHaoGJjule6eu9NzjUbGGonQLSUzSkl-X67nM0ZYPONxngmRXaAx40JEXKTp6Cxfoan3H4QQmjDB82SM1Eq20bJ4wAsw7bduw3u0VEo3WpqAi673QTptttECvGzxMCwdhCGVEpwZGlhZh-d9sMbubO_xm_Y9dHhtaxvwC3zpLQRtzQ26VNB5OT3VCdqslpviKSpfH5-LeRk1LI1DRFPRJkS0rGaizrMkifMma6gSnHGSEaiB8gZInMiMKkJTJkkKKqYyVgBC8Qkix7WNs947qapPp3fgfipKqoOpajBVHUxVJ1MDkv5BGh1-fw4OdPcfeHcEtZTy7I5IOGEZ3wPINngr
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2025_3608659
crossref_primary_10_1109_LRA_2025_3573630
Cites_doi 10.1109/TCDS.2023.3239815
10.1109/TITS.2021.3081560
10.1109/IROS.2018.8594204
10.1109/ICRA48506.2021.9561936
10.1109/LRA.2019.2931179
10.1109/URAI.2018.8441797
10.1109/ACCESS.2020.2987642
10.1109/IV51971.2022.9827020
10.1109/ICRA57147.2024.10610436
10.1109/TNNLS.2019.2944481
10.1109/LRA.2020.2976321
10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
10.1109/TNNLS.2020.3015958
10.1109/GTSD.2018.8595590
10.15607/RSS.2022.XVIII.019
10.1109/MSP.2020.2975749
10.1109/ICRA48506.2021.9560791
10.15607/RSS.2021.XVII.019
10.1109/IJCNN48605.2020.9207469
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2024.3498778
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 11848
ExternalDocumentID 10_1109_LRA_2024_3498778
10753028
Genre orig-research
GrantInformation_xml – fundername: AIFARMS
  grantid: 1024178
– fundername: NSF-USDA COALESCE
  grantid: 2021-67021-34418
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-167d507d2b27b985549c8c1f7323080aba13ca045e81f0162e06af41e4faa7f3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409548200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 29 01:34:40 EST 2025
Tue Nov 18 22:30:59 EST 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-167d507d2b27b985549c8c1f7323080aba13ca045e81f0162e06af41e4faa7f3
ORCID 0000-0002-4657-307X
0009-0002-1640-7617
0000-0001-7900-8061
0000-0003-3826-0978
OpenAccessLink https://ieeexplore.ieee.org/document/10753028
PageCount 8
ParticipantIDs ieee_primary_10753028
crossref_citationtrail_10_1109_LRA_2024_3498778
crossref_primary_10_1109_LRA_2024_3498778
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref15
ref14
ref31
ref30
ref11
ref33
Zhu (ref8) 2016
ref10
Bonawitz (ref20) 2019; 1
Li (ref25) 2020; 2
ref32
McMahan (ref13) 2017; 54
ref2
ref16
Hard (ref19) 2018
Zhao (ref26) 2018
Dennis (ref29) 2021
Kahn (ref4) 2021; 6
Konecn (ref18) 2016
Li (ref23) 2020
ref24
Ester (ref34) 1996
ref21
Chaplot (ref9) 2020
ref28
ref27
Shah (ref5) 2022
ref7
Cho (ref35) 2022
Gasparino (ref1) 2022; 7
ref3
ref6
Ghosh (ref17) 2020; 33
Mohri (ref22) 2019
References_xml – ident: ref15
  doi: 10.1109/TCDS.2023.3239815
– ident: ref31
  doi: 10.1109/TITS.2021.3081560
– volume: 54
  start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  year: 2017
  ident: ref13
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref3
  doi: 10.1109/IROS.2018.8594204
– ident: ref12
  doi: 10.1109/ICRA48506.2021.9561936
– volume: 7
  start-page: 10651
  issue: 4
  volume-title: IEEE Robot. Automat. Lett.
  year: 2022
  ident: ref1
  article-title: WayFAST: Navigation with predictive traversability in the field
– start-page: 2611
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2021
  ident: ref29
  article-title: Heterogeneity for the win: One-shot federated clustering
– ident: ref30
  doi: 10.1109/LRA.2019.2931179
– ident: ref7
  doi: 10.1109/URAI.2018.8441797
– ident: ref11
  doi: 10.1109/ACCESS.2020.2987642
– year: 2018
  ident: ref19
  article-title: Federated learning for mobile keyboard prediction
– ident: ref32
  doi: 10.1109/IV51971.2022.9827020
– ident: ref2
  doi: 10.1109/ICRA57147.2024.10610436
– year: 2022
  ident: ref35
  article-title: To federate or not to federate: Incentivizing client participation in federated learning
– ident: ref24
  doi: 10.1109/TNNLS.2019.2944481
– year: 2018
  ident: ref26
  article-title: Federated learning with non-IID data
– volume-title: Proc. 8th Int. Conf. Learn. Representations
  year: 2020
  ident: ref23
  article-title: On the convergence of fedAvg on non-IID data
– ident: ref14
  doi: 10.1109/LRA.2020.2976321
– ident: ref28
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
– start-page: 4615
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref22
  article-title: Agnostic federated learning
– start-page: 3357
  volume-title: Proc. 2017 IEEE Int. Conf. Robot. Automat.
  year: 2016
  ident: ref8
  article-title: Target-driven visual navigation in indoor scenes using deep reinforcement learning
– start-page: 12872
  volume-title: Proc. 2020 IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
  year: 2020
  ident: ref9
  article-title: Neural topological slam for visual navigation
– ident: ref16
  doi: 10.1109/TNNLS.2020.3015958
– ident: ref6
  doi: 10.1109/GTSD.2018.8595590
– volume-title: Proc. Robot.: Sci. Syst.
  year: 2022
  ident: ref5
  article-title: ViKiNG: Vision-based kilometer-scale navigation with geographic hints
  doi: 10.15607/RSS.2022.XVIII.019
– volume: 33
  start-page: 19586
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2020
  ident: ref17
  article-title: An efficient framework for clustered federated learning
– volume: 1
  start-page: 374
  volume-title: Proc. Mach. Learn. Syst.
  year: 2019
  ident: ref20
  article-title: Towards federated learning at scale: System design
– ident: ref21
  doi: 10.1109/MSP.2020.2975749
– ident: ref33
  doi: 10.1109/ICRA48506.2021.9560791
– start-page: 291
  volume-title: Proc. 2nd Int. Conf. Knowl. Discov. Data Mining
  year: 1996
  ident: ref34
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– ident: ref10
  doi: 10.15607/RSS.2021.XVII.019
– volume: 6
  start-page: 1312
  issue: 2
  volume-title: IEEE Robot. Automat. Lett.
  year: 2021
  ident: ref4
  article-title: BADGR: An autonomous self-supervised learning-based navigation system
– volume: 2
  start-page: 429
  volume-title: Proc. Mach. Learn. Syst.
  year: 2020
  ident: ref25
  article-title: Federated optimization in heterogeneous networks
– ident: ref27
  doi: 10.1109/IJCNN48605.2020.9207469
– year: 2016
  ident: ref18
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
SSID ssj0001527395
Score 2.30905
Snippet Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption....
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 11841
SubjectTerms Bandwidth
Computational modeling
Computer vision
Data models
Decentralized control
Distributed robot systems
Federated learning
Navigation
Predictive models
Robot vision systems
robotics in under-resourced settings
Servers
Training
vision-based navigation
Title Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation
URI https://ieeexplore.ieee.org/document/10753028
Volume 9
WOSCitedRecordID wos001409548200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxQADb0R5VB5YGNzm1Tpha6tGDFChqkLdIj-hUpWgNikb3861k0IWkNiiyHYiH1s-1_Y9B6HbHgwcFnFNjGcdCVzVI1w7Gma8L5WinqAut2YTdDIJ5_PouUpWt7kwSil7-Ux1zKM9y5eZKMxWGcxwakxuwgZqUNovk7V-NlSMlFjU2x5FOlH3cTqAANALOn4AkbUxUqstPTUvFbuUxIf__IkjdFBxRjwoQT5GOyo9Qfs1JcFTpGMlyXh0j4cslR8Lmb-RsRWHgLbwaFkYOQQoSIawaEkcGwUJIJkSV_Kqrxi4Kx4UuUlxyIo1flmsC_jkNONZjidsY4U4svQMzeLxbPRAKgsFIoDp5MTtUwmMT3rcozwyV9IiEQpXUx9Cj9BhnLm-YEDrVOhqYH-ecvpMA2SBZoxq_xw10yxVFwjrQHJo0lcKKEtkZP-oYMAOtMsBV6ZaqLvt3ERU8uLG5WKZ2DDDiRKAIzFwJBUcLXT3XeO9lNb4o-yZQaJWrgTh8pf3V2jPVC_vnVyjZr4q1A3aFZt8sV61UePpc9y2w-cLqJjCqg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwGG0UTdQHrxjx2gdffCjsBt18QwLBiMQQYnhbelUSshnY8O_7tRvKiya-LUv3bdlp0_O1_c5B6LYJHYdFXBPjWUcCVzUJ146GEe9LpagnqMut2QQdDsPJJHopi9VtLYxSyh4-U3VzaffyZSpys1QGI5wak5twE201g8BzinKtnyUVIyYWNVebkU7UGIzakAJ6Qd0PILc2Vmprk8-am4qdTHoH__yMQ7RfskbcLmA-QhsqOUZ7a1qCJ0j3lCTdzj1-YIn8nMrsnXStPATEwp1ZbgQRoCF5gGlL4p7RkACaKXEpsPqGgb3idp6ZIoc0X-DX6SKHV45SnmZ4yJZWiiNNqmjc6447fVKaKBABXCcjbotK4HzS4x7lkTmUFolQuJr6kHyEDuPM9QUDYqdCVwP_85TTYhpACzRjVPunqJKkiTpDWAeSQ0hfKSAtkRH-o4IBP9AuB2SZqqHG6ufGohQYNz4Xs9gmGk4UAxyxgSMu4aihu-8nPgpxjT_aVg0Sa-0KEM5_uX-Ddvrj50E8eBw-XaBdE6o4hXKJKtk8V1doWyyz6WJ-bTvRF1btxMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fed-EC%3A+Bandwidth-Efficient+Clustering-Based+Federated+Learning+for+Autonomous+Visual+Robot+Navigation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Gummadi%2C+Shreya&rft.au=Gasparino%2C+Mateus+V.&rft.au=Vasisht%2C+Deepak&rft.au=Chowdhary%2C+Girish&rft.date=2024-12-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=12&rft.spage=11841&rft.epage=11848&rft_id=info:doi/10.1109%2FLRA.2024.3498778&rft.externalDocID=10753028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon