Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation
Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 9; H. 12; S. 11841 - 11848 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.12.2024
|
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster. |
|---|---|
| ISSN: | 2377-3766 2377-3766 |
| DOI: | 10.1109/LRA.2024.3498778 |