Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation
Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single...
Uložené v:
| Vydané v: | IEEE robotics and automation letters Ročník 9; číslo 12; s. 11841 - 11848 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2024
|
| Predmet: | |
| ISSN: | 2377-3766, 2377-3766 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster. |
|---|---|
| AbstractList | Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption. Federated learning presents a compelling alternative, however, vanilla federated learning methods deployed in robotics aim to learn a single global model across robots that works ideally for all. But in practice one model may not be well suited for robots deployed in various environments. This letter proposes Federated-EmbedCluster (Fed-EC), a clustering-based federated learning framework that is deployed with vision based autonomous robot navigation in diverse outdoor environments. The framework addresses the key federated learning challenge of deteriorating model performance of a single global model due to the presence of non-IID data across real-world robots. Extensive real-world experiments validate that Fed-EC reduces the communication size by 23x for each robot while matching the performance of centralized learning for goal-oriented navigation and outperforms local learning. Fed-EC can transfer previously learnt models to new robots that join the cluster. |
| Author | Chowdhary, Girish Gasparino, Mateus V. Gummadi, Shreya Vasisht, Deepak |
| Author_xml | – sequence: 1 givenname: Shreya orcidid: 0009-0002-1640-7617 surname: Gummadi fullname: Gummadi, Shreya email: gummadi4@illinois.edu organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: Mateus V. orcidid: 0000-0001-7900-8061 surname: Gasparino fullname: Gasparino, Mateus V. organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 3 givenname: Deepak orcidid: 0000-0003-3826-0978 surname: Vasisht fullname: Vasisht, Deepak organization: Siebel School of Computing and Data Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 4 givenname: Girish orcidid: 0000-0002-4657-307X surname: Chowdhary fullname: Chowdhary, Girish organization: Field Robotics Engineering and Science Hub (FRESH), Illinois Autonomous Farm, University of Illinois at Urbana-Champaign, Urbana, IL, USA |
| BookMark | eNp9kD1PwzAQhi1UJErpzsDgP5DijyRO2NqoBaQIpKpijS6JXYxSG9kOiH_flHaoGJjule6eu9NzjUbGGonQLSUzSkl-X67nM0ZYPONxngmRXaAx40JEXKTp6Cxfoan3H4QQmjDB82SM1Eq20bJ4wAsw7bduw3u0VEo3WpqAi673QTptttECvGzxMCwdhCGVEpwZGlhZh-d9sMbubO_xm_Y9dHhtaxvwC3zpLQRtzQ26VNB5OT3VCdqslpviKSpfH5-LeRk1LI1DRFPRJkS0rGaizrMkifMma6gSnHGSEaiB8gZInMiMKkJTJkkKKqYyVgBC8Qkix7WNs947qapPp3fgfipKqoOpajBVHUxVJ1MDkv5BGh1-fw4OdPcfeHcEtZTy7I5IOGEZ3wPINngr |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1109_LRA_2025_3608659 crossref_primary_10_1109_LRA_2025_3573630 |
| Cites_doi | 10.1109/TCDS.2023.3239815 10.1109/TITS.2021.3081560 10.1109/IROS.2018.8594204 10.1109/ICRA48506.2021.9561936 10.1109/LRA.2019.2931179 10.1109/URAI.2018.8441797 10.1109/ACCESS.2020.2987642 10.1109/IV51971.2022.9827020 10.1109/ICRA57147.2024.10610436 10.1109/TNNLS.2019.2944481 10.1109/LRA.2020.2976321 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042 10.1109/TNNLS.2020.3015958 10.1109/GTSD.2018.8595590 10.15607/RSS.2022.XVIII.019 10.1109/MSP.2020.2975749 10.1109/ICRA48506.2021.9560791 10.15607/RSS.2021.XVII.019 10.1109/IJCNN48605.2020.9207469 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/LRA.2024.3498778 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 11848 |
| ExternalDocumentID | 10_1109_LRA_2024_3498778 10753028 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: AIFARMS grantid: 1024178 – fundername: NSF-USDA COALESCE grantid: 2021-67021-34418 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c264t-167d507d2b27b985549c8c1f7323080aba13ca045e81f0162e06af41e4faa7f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409548200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sat Nov 29 01:34:40 EST 2025 Tue Nov 18 22:30:59 EST 2025 Wed Aug 27 02:29:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-167d507d2b27b985549c8c1f7323080aba13ca045e81f0162e06af41e4faa7f3 |
| ORCID | 0000-0002-4657-307X 0009-0002-1640-7617 0000-0001-7900-8061 0000-0003-3826-0978 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10753028 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10753028 crossref_citationtrail_10_1109_LRA_2024_3498778 crossref_primary_10_1109_LRA_2024_3498778 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref12 ref15 ref14 ref31 ref30 ref11 ref33 Zhu (ref8) 2016 ref10 Bonawitz (ref20) 2019; 1 Li (ref25) 2020; 2 ref32 McMahan (ref13) 2017; 54 ref2 ref16 Hard (ref19) 2018 Zhao (ref26) 2018 Dennis (ref29) 2021 Kahn (ref4) 2021; 6 Konecn (ref18) 2016 Li (ref23) 2020 ref24 Ester (ref34) 1996 ref21 Chaplot (ref9) 2020 ref28 ref27 Shah (ref5) 2022 ref7 Cho (ref35) 2022 Gasparino (ref1) 2022; 7 ref3 ref6 Ghosh (ref17) 2020; 33 Mohri (ref22) 2019 |
| References_xml | – ident: ref15 doi: 10.1109/TCDS.2023.3239815 – ident: ref31 doi: 10.1109/TITS.2021.3081560 – volume: 54 start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. year: 2017 ident: ref13 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref3 doi: 10.1109/IROS.2018.8594204 – ident: ref12 doi: 10.1109/ICRA48506.2021.9561936 – volume: 7 start-page: 10651 issue: 4 volume-title: IEEE Robot. Automat. Lett. year: 2022 ident: ref1 article-title: WayFAST: Navigation with predictive traversability in the field – start-page: 2611 volume-title: Proc. Int. Conf. Mach. Learn. year: 2021 ident: ref29 article-title: Heterogeneity for the win: One-shot federated clustering – ident: ref30 doi: 10.1109/LRA.2019.2931179 – ident: ref7 doi: 10.1109/URAI.2018.8441797 – ident: ref11 doi: 10.1109/ACCESS.2020.2987642 – year: 2018 ident: ref19 article-title: Federated learning for mobile keyboard prediction – ident: ref32 doi: 10.1109/IV51971.2022.9827020 – ident: ref2 doi: 10.1109/ICRA57147.2024.10610436 – year: 2022 ident: ref35 article-title: To federate or not to federate: Incentivizing client participation in federated learning – ident: ref24 doi: 10.1109/TNNLS.2019.2944481 – year: 2018 ident: ref26 article-title: Federated learning with non-IID data – volume-title: Proc. 8th Int. Conf. Learn. Representations year: 2020 ident: ref23 article-title: On the convergence of fedAvg on non-IID data – ident: ref14 doi: 10.1109/LRA.2020.2976321 – ident: ref28 doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042 – start-page: 4615 volume-title: Proc. Int. Conf. Mach. Learn. year: 2019 ident: ref22 article-title: Agnostic federated learning – start-page: 3357 volume-title: Proc. 2017 IEEE Int. Conf. Robot. Automat. year: 2016 ident: ref8 article-title: Target-driven visual navigation in indoor scenes using deep reinforcement learning – start-page: 12872 volume-title: Proc. 2020 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. year: 2020 ident: ref9 article-title: Neural topological slam for visual navigation – ident: ref16 doi: 10.1109/TNNLS.2020.3015958 – ident: ref6 doi: 10.1109/GTSD.2018.8595590 – volume-title: Proc. Robot.: Sci. Syst. year: 2022 ident: ref5 article-title: ViKiNG: Vision-based kilometer-scale navigation with geographic hints doi: 10.15607/RSS.2022.XVIII.019 – volume: 33 start-page: 19586 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref17 article-title: An efficient framework for clustered federated learning – volume: 1 start-page: 374 volume-title: Proc. Mach. Learn. Syst. year: 2019 ident: ref20 article-title: Towards federated learning at scale: System design – ident: ref21 doi: 10.1109/MSP.2020.2975749 – ident: ref33 doi: 10.1109/ICRA48506.2021.9560791 – start-page: 291 volume-title: Proc. 2nd Int. Conf. Knowl. Discov. Data Mining year: 1996 ident: ref34 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – ident: ref10 doi: 10.15607/RSS.2021.XVII.019 – volume: 6 start-page: 1312 issue: 2 volume-title: IEEE Robot. Automat. Lett. year: 2021 ident: ref4 article-title: BADGR: An autonomous self-supervised learning-based navigation system – volume: 2 start-page: 429 volume-title: Proc. Mach. Learn. Syst. year: 2020 ident: ref25 article-title: Federated optimization in heterogeneous networks – ident: ref27 doi: 10.1109/IJCNN48605.2020.9207469 – year: 2016 ident: ref18 article-title: Federated optimization: Distributed machine learning for on-device intelligence |
| SSID | ssj0001527395 |
| Score | 2.30905 |
| Snippet | Centralized learning requires data to be aggregated at a central server, which poses significant challenges in terms of data privacy and bandwidth consumption.... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 11841 |
| SubjectTerms | Bandwidth Computational modeling Computer vision Data models Decentralized control Distributed robot systems Federated learning Navigation Predictive models Robot vision systems robotics in under-resourced settings Servers Training vision-based navigation |
| Title | Fed-EC: Bandwidth-Efficient Clustering-Based Federated Learning for Autonomous Visual Robot Navigation |
| URI | https://ieeexplore.ieee.org/document/10753028 |
| Volume | 9 |
| WOSCitedRecordID | wos001409548200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADb0R5VB5YGNzm4TzM1laJGEqFqqrqFjl-QKUqQW1SNn47tpNCFpDYouicRPkS3Xfnu-8AuMciJDqFjzAnHsIktVHqYw_5IiVG_iQ17WPzcTCZhIsFeamb1U0vjBDCFJ-Jnj40e_k8Z6VOlak_PNBDbsIWaAWBXzVr_SRUtJQY8XZbkRbpj6cDFQA6uOdiFVnrQWoN19OYpWJcSXz8z4c4AUc1Z4SDCuRTsCeyM3DYUBI8BzIWHEWjRzikGf9Y8uINRUYcQl0LjlallkNQhmionBaHsVaQUCSTw1pe9RUq7goHZaFbHPJyA-fLTaluOc3TvIATujVCHHl2AWZxNBs9oXqEAmKK6RTI9gOuGB93UidIiS5JIyxktgxcFXqEFk2p7TKqaJ0IbanYnyMsn0psCywpDaR7CdpZnokrAKXjckwoc4XkmFNGPMKJLbHPhOdKwTugv3u5CavlxfWUi1ViwgyLJAqORMOR1HB0wMP3ivdKWuMP2wuNRMOuAuH6l_M34EAvr-pObkG7WJfiDuyzbbHcrLug9fwZdc3n8wVs68MD |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CurBZ8X63IMXD9vmsXmst7Y0VKxFSim9hc0-tFASaZP6993dpNqLgrcQJpuQL2G-mZ35BoB7LEKiU_gIc-IhTBIbJT72kC8SYuRPEtM-NhkEw2E4nZLXqlnd9MIIIUzxmWjqQ7OXzzNW6FSZ-sMDPeQm3AY7HsaOVbZr_aRUtJgY8dabkRZpDUZtFQI6uOliFVvrUWobzmdjmopxJtHRPx_jGBxWrBG2S5hPwJZIT8HBhpbgGZCR4KjXfYQdmvLPGc_fUc_IQ6i1YHdeaEEEZYg6ym1xGGkNCUUzOawEVt-gYq-wXeS6ySErlnAyWxbqlqMsyXI4pCsjxZGldTCOeuNuH1VDFBBTXCdHth9wxfm4kzhBQnRRGmEhs2XgquAjtGhCbZdRRexEaEvF_xxh-VRiW2BJaSDdc1BLs1RcACgdl2NCmSskx5wy4hFObIl9JjxXCt4ArfXLjVklMK7nXMxjE2hYJFZwxBqOuIKjAR6-r_goxTX-sK1rJDbsShAufzl_B_b645dBPHgaPl-Bfb1UWYVyDWr5ohA3YJet8tlycWs-oi8brMUZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fed-EC%3A+Bandwidth-Efficient+Clustering-Based+Federated+Learning+for+Autonomous+Visual+Robot+Navigation&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Gummadi%2C+Shreya&rft.au=Gasparino%2C+Mateus+V.&rft.au=Vasisht%2C+Deepak&rft.au=Chowdhary%2C+Girish&rft.date=2024-12-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=12&rft.spage=11841&rft.epage=11848&rft_id=info:doi/10.1109%2FLRA.2024.3498778&rft.externalDocID=10753028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |