Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm
For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...
Uloženo v:
| Vydáno v: | Shanghai jiao tong da xue xue bao Ročník 20; číslo 1; s. 51 - 55 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Shanghai Jiaotong University Press
01.02.2015
|
| Témata: | |
| ISSN: | 1007-1172, 1995-8188 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance |
|---|---|
| Bibliografie: | 31-1943/U fuzzy c-means (FCM), particle swarm optimization (PSO), clustering algorithm, new metric norm MAO Li, SONG Yi-chun, LI Yin YANG Hong, XIAO Wei (1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things, Jiangnan University, Wuxi 214122, Jiangsu, China; 2. Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, Jiangsu, China) For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1007-1172 1995-8188 |
| DOI: | 10.1007/s12204-015-1587-x |