Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm

For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a par...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Shanghai jiao tong da xue xue bao Ročník 20; číslo 1; s. 51 - 55
Hlavní autor: 毛力 宋益春 李引 杨弘 肖炜
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Shanghai Jiaotong University Press 01.02.2015
Témata:
ISSN:1007-1172, 1995-8188
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance
Bibliografie:31-1943/U
fuzzy c-means (FCM), particle swarm optimization (PSO), clustering algorithm, new metric norm
MAO Li, SONG Yi-chun, LI Yin YANG Hong, XIAO Wei (1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things, Jiangnan University, Wuxi 214122, Jiangsu, China; 2. Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, Jiangsu, China)
For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined experiment shows that the AF-APSO can avoid local optima, significantly. with particle swarm optimization (AF-APSO). The and get the best fitness and clustering performance
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1007-1172
1995-8188
DOI:10.1007/s12204-015-1587-x