Distributed Nonsmooth Optimization With Coupled Inequality Constraints via Modified Lagrangian Function
This note considers a distributed convex optimization problem with nonsmooth cost functions and coupled nonlinear inequality constraints. To solve the problem, we first propose a modified Lagrangian function containing local multipliers and a nonsmooth penalty function. Then, we construct a distribu...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 63; číslo 6; s. 1753 - 1759 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2018
|
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This note considers a distributed convex optimization problem with nonsmooth cost functions and coupled nonlinear inequality constraints. To solve the problem, we first propose a modified Lagrangian function containing local multipliers and a nonsmooth penalty function. Then, we construct a distributed continuous-time algorithm by virtue of a projected primal-dual subgradient dynamics. Based on the nonsmooth analysis and Lyapunov function, we obtain the existence of the solution to the nonsmooth algorithm and its convergence. |
|---|---|
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2017.2752001 |