An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter

This paper proposes an efficient implementation of the generalized labeled multi-Bernoulli (GLMB) filter by combining the prediction and update into a single step. In contrast to an earlier implementation that involves separate truncations in the prediction and update steps, the proposed implementat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 65; číslo 8; s. 1975 - 1987
Hlavní autori: Vo, Ba-Ngu, Vo, Ba-Tuong, Hoang, Hung Gia
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 15.04.2017
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes an efficient implementation of the generalized labeled multi-Bernoulli (GLMB) filter by combining the prediction and update into a single step. In contrast to an earlier implementation that involves separate truncations in the prediction and update steps, the proposed implementation requires only one truncation procedure for each iteration. Furthermore, we propose an efficient algorithm for truncating the GLMB filtering density based on Gibbs sampling. The resulting implementation has a linear complexity in the number of measurements and quadratic in the number of hypothesized objects.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2016.2641392