Distributed event-triggered algorithm for convex optimization with coupled constraints
This paper develops a distributed primal–dual algorithm via an event-triggered mechanism to solve a class of convex optimization problems subject to local set constraints, coupled equality and inequality constraints. Different from some existing distributed algorithms with the diminishing step-sizes...
Uloženo v:
| Vydáno v: | Automatica (Oxford) Ročník 170; s. 111877 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2024
|
| Témata: | |
| ISSN: | 0005-1098 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper develops a distributed primal–dual algorithm via an event-triggered mechanism to solve a class of convex optimization problems subject to local set constraints, coupled equality and inequality constraints. Different from some existing distributed algorithms with the diminishing step-sizes, our algorithm uses the constant step-sizes, and is shown to achieve an exact convergence to an optimal solution with an ergodic convergence rate of O(1/k) for general convex objective functions, where k>0 is the iteration number. Based on the event-triggered communication mechanism, the proposed algorithm can effectively reduce the communication cost without sacrificing the convergence rate. Finally, a numerical example is presented to verify the effectiveness of the proposed algorithm. |
|---|---|
| ISSN: | 0005-1098 |
| DOI: | 10.1016/j.automatica.2024.111877 |