Distance-Based Probability Model for Octree Coding
We present a context-driven method to encode nodes of an octree, which is typically used to encode the point-cloud geometry. Instead of using one bit per node of the tree, the context allows for deriving probabilities for that node based on distances of the actual voxel to the voxels in a reference...
Uložené v:
| Vydané v: | IEEE signal processing letters Ročník 25; číslo 6; s. 739 - 742 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2018
|
| Predmet: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a context-driven method to encode nodes of an octree, which is typically used to encode the point-cloud geometry. Instead of using one bit per node of the tree, the context allows for deriving probabilities for that node based on distances of the actual voxel to the voxels in a reference point cloud. Accurate probabilities of the node state allow for the use of an arithmetic coder to reduce the bit rate. Results point to potentially large reductions in rate if there is a good model from which to derive the context, i.e., one can get large reductions if the reference-cloud geometry is close enough to the one being encoded. |
|---|---|
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2018.2823701 |