Distributed stochastic Nash equilibrium seeking under heavy-tailed noises
This paper studies the distributed stochastic Nash equilibrium seeking problem under heavy-tailed noises. Unlike the traditional stochastic Nash equilibrium algorithms, where the gradient noises are usually assumed to have a bounded variance, we assume that the gradient noises can be heavy-tailed, w...
Uložené v:
| Vydané v: | Automatica (Oxford) Ročník 173; s. 112081 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.03.2025
|
| Predmet: | |
| ISSN: | 0005-1098 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper studies the distributed stochastic Nash equilibrium seeking problem under heavy-tailed noises. Unlike the traditional stochastic Nash equilibrium algorithms, where the gradient noises are usually assumed to have a bounded variance, we assume that the gradient noises can be heavy-tailed, which can have an unbounded variance. A distributed Nash equilibrium seeking law combining projected gradient descent and gradient clipping is proposed. Sufficient conditions on the step-sizes are given to guarantee almost sure and in mean square convergence to the Nash equilibrium of the game. A numerical example is given to show the effectiveness and efficiency of the algorithm. |
|---|---|
| ISSN: | 0005-1098 |
| DOI: | 10.1016/j.automatica.2024.112081 |