Distributed stochastic Nash equilibrium seeking under heavy-tailed noises

This paper studies the distributed stochastic Nash equilibrium seeking problem under heavy-tailed noises. Unlike the traditional stochastic Nash equilibrium algorithms, where the gradient noises are usually assumed to have a bounded variance, we assume that the gradient noises can be heavy-tailed, w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatica (Oxford) Ročník 173; s. 112081
Hlavní autori: Sun, Chao, Chen, Bo, Wang, Jianzheng, Wang, Zheming, Yu, Li
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2025
Predmet:
ISSN:0005-1098
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper studies the distributed stochastic Nash equilibrium seeking problem under heavy-tailed noises. Unlike the traditional stochastic Nash equilibrium algorithms, where the gradient noises are usually assumed to have a bounded variance, we assume that the gradient noises can be heavy-tailed, which can have an unbounded variance. A distributed Nash equilibrium seeking law combining projected gradient descent and gradient clipping is proposed. Sufficient conditions on the step-sizes are given to guarantee almost sure and in mean square convergence to the Nash equilibrium of the game. A numerical example is given to show the effectiveness and efficiency of the algorithm.
ISSN:0005-1098
DOI:10.1016/j.automatica.2024.112081