Complex Minkowski Reduction and a Relaxation for Near-Optimal MIMO Linear Equalization

First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE wireless communications letters Ročník 6; číslo 1; s. 38 - 41
Hlavní autoři: Ding, Liqin, Wang, Yang, Zhang, Jiliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.2017
Témata:
ISSN:2162-2337, 2162-2345
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm following the relaxed criterion is also developed. Simulation results show that when employed to assist linear equalization for multiple-input multiple-output systems, the proposed algorithms can achieve tremendous computational savings compared with the most efficient real-domain Minkowski reduction algorithm, without causing noticeable performance degradation.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2016.2628746