Complex Minkowski Reduction and a Relaxation for Near-Optimal MIMO Linear Equalization
First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm f...
Uloženo v:
| Vydáno v: | IEEE wireless communications letters Ročník 6; číslo 1; s. 38 - 41 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.2017
|
| Témata: | |
| ISSN: | 2162-2337, 2162-2345 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm following the relaxed criterion is also developed. Simulation results show that when employed to assist linear equalization for multiple-input multiple-output systems, the proposed algorithms can achieve tremendous computational savings compared with the most efficient real-domain Minkowski reduction algorithm, without causing noticeable performance degradation. |
|---|---|
| ISSN: | 2162-2337 2162-2345 |
| DOI: | 10.1109/LWC.2016.2628746 |