Complex Minkowski Reduction and a Relaxation for Near-Optimal MIMO Linear Equalization
First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm f...
Gespeichert in:
| Veröffentlicht in: | IEEE wireless communications letters Jg. 6; H. 1; S. 38 - 41 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.02.2017
|
| Schlagworte: | |
| ISSN: | 2162-2337, 2162-2345 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm following the relaxed criterion is also developed. Simulation results show that when employed to assist linear equalization for multiple-input multiple-output systems, the proposed algorithms can achieve tremendous computational savings compared with the most efficient real-domain Minkowski reduction algorithm, without causing noticeable performance degradation. |
|---|---|
| ISSN: | 2162-2337 2162-2345 |
| DOI: | 10.1109/LWC.2016.2628746 |