Complex Minkowski Reduction and a Relaxation for Near-Optimal MIMO Linear Equalization

First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters Jg. 6; H. 1; S. 38 - 41
Hauptverfasser: Ding, Liqin, Wang, Yang, Zhang, Jiliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2017
Schlagworte:
ISSN:2162-2337, 2162-2345
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First, this letter presents a Minkowski reduction algorithm working directly on complex lattices. Then, a relaxation is proposed to Minkowski criterion by restricting the search of basis vectors within sublattices whose dimensions are determined by an integer parameter β, and a reduction algorithm following the relaxed criterion is also developed. Simulation results show that when employed to assist linear equalization for multiple-input multiple-output systems, the proposed algorithms can achieve tremendous computational savings compared with the most efficient real-domain Minkowski reduction algorithm, without causing noticeable performance degradation.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2016.2628746