Voice Activity Detection Via Noise Reducing Using Non-Negative Sparse Coding
This letter presents a voice activity detection (VAD) approach using non-negative sparse coding to improve the detection performance in low signal-to-noise ratio (SNR) conditions. The basic idea is to use features extracted from a noise-reduced representation of original audio signals. We decompose...
Uloženo v:
| Vydáno v: | IEEE signal processing letters Ročník 20; číslo 5; s. 475 - 478 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2013
|
| Témata: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This letter presents a voice activity detection (VAD) approach using non-negative sparse coding to improve the detection performance in low signal-to-noise ratio (SNR) conditions. The basic idea is to use features extracted from a noise-reduced representation of original audio signals. We decompose the magnitude spectrum of an audio signal on a speech dictionary learned from clean speech and a noise dictionary learned from noise samples. Only coefficients corresponding to the speech dictionary are considered and used as the noise-reduced representation of the signal for feature extraction. A conditional random field (CRF) is used to model the correlation between feature sequences and voice activity labels along audio signals. Then, we assign the voice activity labels for a given audio by decoding the CRF. Experimental results demonstrate that our VAD approach has a good performance in low SNR conditions. |
|---|---|
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2013.2252615 |