Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition With Noisy Images

We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from software fully-connected network (FCN) to hardware SNN with little degradation is discussed. The degradation of classification accuracy is analyzed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters Jg. 39; H. 4; S. 630 - 633
Hauptverfasser: Kim, Hyungjin, Hwang, Sungmin, Park, Jungjin, Yun, Sangdoo, Lee, Jong-Ho, Park, Byung-Gook
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2018
Schlagworte:
ISSN:0741-3106, 1558-0563
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from software fully-connected network (FCN) to hardware SNN with little degradation is discussed. The degradation of classification accuracy is analyzed in terms of device variation and noisy images. In addition, the accuracy degradation is significantly improved by stacking denoising autoencoder (DAE) layer. FCN–SNN conversion with very little performance drop is demonstrated using weight normalization, and SNN with DAE layer shows a great tolerance to input image noise.
AbstractList We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from software fully-connected network (FCN) to hardware SNN with little degradation is discussed. The degradation of classification accuracy is analyzed in terms of device variation and noisy images. In addition, the accuracy degradation is significantly improved by stacking denoising autoencoder (DAE) layer. FCN–SNN conversion with very little performance drop is demonstrated using weight normalization, and SNN with DAE layer shows a great tolerance to input image noise.
Author Lee, Jong-Ho
Park, Jungjin
Park, Byung-Gook
Kim, Hyungjin
Hwang, Sungmin
Yun, Sangdoo
Author_xml – sequence: 1
  givenname: Hyungjin
  orcidid: 0000-0002-4834-6882
  surname: Kim
  fullname: Kim, Hyungjin
  email: hyungjin@ece.ucsb.edu
  organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
– sequence: 2
  givenname: Sungmin
  surname: Hwang
  fullname: Hwang, Sungmin
  organization: Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 3
  givenname: Jungjin
  surname: Park
  fullname: Park, Jungjin
  organization: Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 4
  givenname: Sangdoo
  surname: Yun
  fullname: Yun, Sangdoo
  organization: Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 5
  givenname: Jong-Ho
  orcidid: 0000-0003-3559-9802
  surname: Lee
  fullname: Lee, Jong-Ho
  organization: Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 6
  givenname: Byung-Gook
  orcidid: 0000-0002-2962-2458
  surname: Park
  fullname: Park, Byung-Gook
  email: bgpark@snu.ac.kr
  organization: Department of Electrical and Computer Engineering and the Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
BookMark eNp9kMFOAjEQhhuDiYjeTbz0BRan291u92gQlYSgEYjHzWzpYgVa0pYY3t5FiAcPnv5k8n8zme-SdKyzmpAbBn3GoLwbDx_6KTDZTyWUQrAz0mV5LhPIBe-QLhQZSzgDcUEuQ_gEYFlWZF3ipluzMnZJJ3rncd1G_HJ-RefhMJzuLW6jUXTm0QYTovOBol38tJ2lA-PVzsRAG-fpK8aovaVvWrmlNdG0hXcTP-jEmbCnow0udbgi5w2ug74-ZY_MH4ezwXMyfnkaDe7HiUoFj0kBIKXmKisbBqrUIq9RYlFLgU3KkUEjsMYiLQQ0TSHLFAXKOi11Vi8Y5sB7BI57lXcheN1UW2826PcVg-ogrGqFVQdh1UlYi4g_iDIRD29Ej2b9H3h7BI3W-veO5JDKkvFvGSF8Cg
CODEN EDLEDZ
CitedBy_id crossref_primary_10_3390_app11156703
crossref_primary_10_1016_j_neucom_2019_09_030
crossref_primary_10_1039_D4MH00053F
crossref_primary_10_1016_j_neucom_2024_127653
crossref_primary_10_3389_fnano_2021_826232
crossref_primary_10_1016_j_chaos_2022_111999
crossref_primary_10_1039_D4MH01182A
crossref_primary_10_1016_j_nanoen_2023_109169
crossref_primary_10_1109_ACCESS_2021_3108186
crossref_primary_10_3390_electronics10222784
crossref_primary_10_1063_1_5039544
crossref_primary_10_1007_s00530_025_01821_6
crossref_primary_10_1109_ACCESS_2020_3041734
crossref_primary_10_1002_aisy_202300456
crossref_primary_10_1109_LED_2023_3252579
crossref_primary_10_1016_j_cmpbup_2024_100171
crossref_primary_10_3390_biomimetics8050432
crossref_primary_10_1039_D5MH00086F
crossref_primary_10_1109_ACCESS_2020_3046300
crossref_primary_10_1109_TED_2022_3186965
crossref_primary_10_1109_LED_2024_3445970
crossref_primary_10_1088_1361_6528_ac805d
crossref_primary_10_1007_s00521_021_05699_z
crossref_primary_10_1016_j_chaos_2022_112106
crossref_primary_10_1016_j_sse_2019_02_011
crossref_primary_10_1109_LED_2023_3265065
crossref_primary_10_3390_sym13010087
crossref_primary_10_1039_D1RA06492D
crossref_primary_10_3390_ma13010166
crossref_primary_10_1007_s00530_024_01480_z
crossref_primary_10_3390_math11092015
crossref_primary_10_1145_3304103
crossref_primary_10_1002_aisy_202100273
crossref_primary_10_1038_s41467_019_13827_6
crossref_primary_10_1038_s41467_022_28303_x
crossref_primary_10_1063_5_0021626
crossref_primary_10_1109_TED_2020_3001492
crossref_primary_10_3390_electronics9010013
crossref_primary_10_3390_biomimetics9090578
crossref_primary_10_1016_j_chaos_2022_111813
crossref_primary_10_1109_LED_2022_3149029
crossref_primary_10_3390_math10010148
crossref_primary_10_1088_2053_1583_ab23ba
crossref_primary_10_1002_adfm_202405544
crossref_primary_10_1016_j_chaos_2021_111587
crossref_primary_10_3390_s23239612
crossref_primary_10_3389_fnins_2020_00423
crossref_primary_10_1007_s10489_024_05299_z
crossref_primary_10_1002_adma_202413916
crossref_primary_10_1016_j_jfranklin_2020_08_015
crossref_primary_10_1002_aisy_202200210
crossref_primary_10_3390_s21134462
crossref_primary_10_1016_j_neucom_2020_11_016
crossref_primary_10_1109_LED_2019_2958623
crossref_primary_10_1002_admt_202400063
Cites_doi 10.1038/nature14441
10.1088/1361-6528/aa86f8
10.1109/LED.2016.2521863
10.1145/2851613.2851724
10.1109/IJCNN.2016.7727303
10.1016/S0893-6080(97)00011-7
10.1109/LED.2017.2731859
10.1002/aelm.201600090
10.1109/LED.2016.2570279
10.1109/LED.2016.2517080
10.1109/TNNLS.2017.2778940
10.1109/TED.2004.834915
10.1142/S0129065712500141
10.3389/fncom.2015.00099
10.1109/5.58356
10.1021/acsnano.6b07894
10.1021/acsami.7b11191
10.1109/IEDM.2016.7838433
10.1109/TED.2017.2685519
10.1109/TED.2016.2630925
10.1109/IJCNN.2015.7280696
10.1016/j.neucom.2010.03.021
10.1088/0957-4484/27/36/365204
10.1109/LED.2017.2713460
10.1109/TCSII.2015.2456372
10.5573/JSTS.2016.16.5.657
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LED.2018.2809661
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0563
EndPage 633
ExternalDocumentID 10_1109_LED_2018_2809661
8302891
Genre orig-research
GrantInformation_xml – fundername: Brain Korea 21 Plus Project in 2017
– fundername: ICT
  grantid: 2016M3A7B4910348
– fundername: Nanomaterial Technology Development Programthrough the National Research Foundation of Korea through the Ministry of Science
  funderid: 10.13039/501100003725
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AFFNX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-70088e3c49f10c9e65ba8a7b86af23a10f6aba72760ff7892a6a8b29e4bd1a503
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428689000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0741-3106
IngestDate Tue Nov 18 19:37:56 EST 2025
Sat Nov 29 03:57:18 EST 2025
Wed Aug 27 02:51:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-70088e3c49f10c9e65ba8a7b86af23a10f6aba72760ff7892a6a8b29e4bd1a503
ORCID 0000-0002-4834-6882
0000-0002-2962-2458
0000-0003-3559-9802
PageCount 4
ParticipantIDs crossref_primary_10_1109_LED_2018_2809661
ieee_primary_8302891
crossref_citationtrail_10_1109_LED_2018_2809661
PublicationCentury 2000
PublicationDate 2018-April
2018-4-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-April
PublicationDecade 2010
PublicationTitle IEEE electron device letters
PublicationTitleAbbrev LED
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
ref17
ref16
ref18
vincent (ref20) 2010; 11
xie (ref21) 2012
prezioso (ref2) 2015; 521
ref24
ref23
ref26
ref25
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
o’connor (ref19) 2016
References_xml – volume: 11
  start-page: 3371
  year: 2010
  ident: ref20
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 521
  start-page: 61
  year: 2015
  ident: ref2
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: ref24
  doi: 10.1088/1361-6528/aa86f8
– ident: ref23
  doi: 10.1109/LED.2016.2521863
– ident: ref12
  doi: 10.1145/2851613.2851724
– start-page: 341
  year: 2012
  ident: ref21
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref13
  doi: 10.1109/IJCNN.2016.7727303
– ident: ref9
  doi: 10.1016/S0893-6080(97)00011-7
– ident: ref18
  doi: 10.1109/LED.2017.2731859
– ident: ref3
  doi: 10.1002/aelm.201600090
– ident: ref4
  doi: 10.1109/LED.2016.2570279
– ident: ref5
  doi: 10.1109/LED.2016.2517080
– ident: ref17
  doi: 10.1109/TNNLS.2017.2778940
– ident: ref27
  doi: 10.1109/TED.2004.834915
– ident: ref11
  doi: 10.1142/S0129065712500141
– ident: ref14
  doi: 10.3389/fncom.2015.00099
– ident: ref1
  doi: 10.1109/5.58356
– ident: ref16
  doi: 10.1021/acsnano.6b07894
– ident: ref8
  doi: 10.1021/acsami.7b11191
– ident: ref22
  doi: 10.1109/IEDM.2016.7838433
– ident: ref26
  doi: 10.1109/TED.2017.2685519
– ident: ref28
  doi: 10.1109/TED.2016.2630925
– ident: ref29
  doi: 10.1109/IJCNN.2015.7280696
– ident: ref10
  doi: 10.1016/j.neucom.2010.03.021
– ident: ref6
  doi: 10.1088/0957-4484/27/36/365204
– ident: ref7
  doi: 10.1109/LED.2017.2713460
– year: 2016
  ident: ref19
  publication-title: Deep spiking networks
– ident: ref15
  doi: 10.1109/TCSII.2015.2456372
– ident: ref25
  doi: 10.5573/JSTS.2016.16.5.657
SSID ssj0014474
Score 2.5027983
Snippet We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 630
SubjectTerms Biological neural networks
Degradation
Denoising autoencoder (DAE)
Hardware
neuromorphic system
neuron circuit
Neurons
Noise measurement
pattern recognition
Software
spiking neural network (SNN)
synaptic device
Transistors
Title Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition With Noisy Images
URI https://ieeexplore.ieee.org/document/8302891
Volume 39
WOSCitedRecordID wos000428689000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0563
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014474
  issn: 0741-3106
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5z-KAP3qY4b-TBF8G6rE1zeZS5oSBDvODeymmaYkHbsXaC_94krUVBBN9KOIHSr5xL8p3vIHRKdeIrpqgHXBKPJinz4jQknjCLIaMa_ADcsAk-nYrZTN510HnbC6O1duQzfWEf3V1-UqilPSobWK0qYVvVVzhnda9We2NAaa24bCKk8SukvZIkcnA7vrIcLnHhC5Ows-GPEPRtpooLKZPN_73MFtpoUkd8WWO9jTo630Hr3wQFe6h4mGf27BtbzQ1jO61J3tgRA_DDRw7GQyjsApTTBykx5ImzLnI8yhZqmVUlNoksvnPCmzm-_2IYGYPnrHrB0yIrP_DNm3FE5S56mowfR9deM1LBUz4LKo-bkC90oKhMh0RJzcIYBPBYMEgNKkOSMojB5DSMpCkX0gcGIvalpnEyhJAEe6ibF7neR1hKoKZcohCKhCY8AMUlhKbaNgmD8IOwjwZfXzlSjd64HXvxGrm6g8jI4BJZXKIGlz46a3fMa62NP2x7FpLWrkHj4PflQ7RmN9eMmyPUrRZLfYxW1XuVlYsT9yN9AoilxpM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6LCurBt_g2By-CdbNtmiZHWZVdXIv4QG9lmqZY0Fa2XWH_vUnaLQoieCthWkq_Mo_km28QOqEqcSWT1IFAEIcmKXPi1CcO14s-owpcD-ywiSAM-cuLuOugs7YXRillyWfq3Fzas_ykkBOzVdY1WlXctKrPm8lZTbdWe2ZAaa25rGOk9iykPZQkoju6ujQsLn7ucp2ys96PIPRtqooNKter_3udNbTSJI_4okZ7HXVUvoGWv0kKbqLi4SMzu9_YqG5o27CmeWNLDcAP0xy0j5DYhiirEFJiyBNrXeS4n43lJKtKrFNZfGelN3N8P-MYaYPnrHrFYZGVUzx8166o3EJP11eP_YHTDFVwpMu8ygl00OfKk1SkPSKFYn4MHIKYM0g1Lj2SMohBZzWMpGnAhQsMeOwKReOkBz7xttFcXuRqB2EhgOqCiYLPE5oEHshAgK_rbZ0ycNfzd1F39pUj2SiOm8EXb5GtPIiINC6RwSVqcNlFp-0dH7Xaxh-2mwaS1q5BY-_35WO0OHi8HUWjYXizj5bMg2r-zQGaq8YTdYgW5GeVleMj-1N9AQxCydw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spiking+Neural+Network+Using+Synaptic+Transistors+and+Neuron+Circuits+for+Pattern+Recognition+With+Noisy+Images&rft.jtitle=IEEE+electron+device+letters&rft.au=Kim%2C+Hyungjin&rft.au=Hwang%2C+Sungmin&rft.au=Park%2C+Jungjin&rft.au=Yun%2C+Sangdoo&rft.date=2018-04-01&rft.issn=0741-3106&rft.eissn=1558-0563&rft.volume=39&rft.issue=4&rft.spage=630&rft.epage=633&rft_id=info:doi/10.1109%2FLED.2018.2809661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LED_2018_2809661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3106&client=summon