Spiking Neural Network Using Synaptic Transistors and Neuron Circuits for Pattern Recognition With Noisy Images

We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from software fully-connected network (FCN) to hardware SNN with little degradation is discussed. The degradation of classification accuracy is analyzed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE electron device letters Ročník 39; číslo 4; s. 630 - 633
Hlavní autoři: Kim, Hyungjin, Hwang, Sungmin, Park, Jungjin, Yun, Sangdoo, Lee, Jong-Ho, Park, Byung-Gook
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2018
Témata:
ISSN:0741-3106, 1558-0563
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We demonstrate the hardware implementation of spiking neural network (SNN) with synaptic transistors and neuron circuits. The method of conversion from software fully-connected network (FCN) to hardware SNN with little degradation is discussed. The degradation of classification accuracy is analyzed in terms of device variation and noisy images. In addition, the accuracy degradation is significantly improved by stacking denoising autoencoder (DAE) layer. FCN–SNN conversion with very little performance drop is demonstrated using weight normalization, and SNN with DAE layer shows a great tolerance to input image noise.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2018.2809661