Discrete Time q-Lag Maximum Likelihood FIR Smoothing and Iterative Recursive Algorithm

The finite impulse response (FIR) approach is known to be more robust than the Kalman approach. In this paper, we derive a batch <inline-formula><tex-math notation="LaTeX">q</tex-math></inline-formula>-lag maximum likelihood (ML) FIR smoother for full covariance mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 69; S. 6342 - 6354
Hauptverfasser: Zhao, Shunyi, Wang, Jinfu, Shmaliy, Yuriy S., Liu, Fei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 2021
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite impulse response (FIR) approach is known to be more robust than the Kalman approach. In this paper, we derive a batch <inline-formula><tex-math notation="LaTeX">q</tex-math></inline-formula>-lag maximum likelihood (ML) FIR smoother for full covariance matrices and represent it with an iterative algorithm using recursions for diagonal covariance matrices. It is shown that, under ideal conditions of fully known model, the ML FIR smoother occupies an intermediate place between the more accurate Rauch-Tung-Striebel (RTS) smoother and the less accurate unbiased FIR smoother. With uncertainties and errors in noise covariances, ML FIR smoothing is significantly superior to RTS smoothing. It is also shown experimentally that ML FIR smoothing is more robust than RTS smoothing against measurement outliers.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2021.3127677