Discrete Time q-Lag Maximum Likelihood FIR Smoothing and Iterative Recursive Algorithm
The finite impulse response (FIR) approach is known to be more robust than the Kalman approach. In this paper, we derive a batch <inline-formula><tex-math notation="LaTeX">q</tex-math></inline-formula>-lag maximum likelihood (ML) FIR smoother for full covariance mat...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 69; s. 6342 - 6354 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2021
|
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The finite impulse response (FIR) approach is known to be more robust than the Kalman approach. In this paper, we derive a batch <inline-formula><tex-math notation="LaTeX">q</tex-math></inline-formula>-lag maximum likelihood (ML) FIR smoother for full covariance matrices and represent it with an iterative algorithm using recursions for diagonal covariance matrices. It is shown that, under ideal conditions of fully known model, the ML FIR smoother occupies an intermediate place between the more accurate Rauch-Tung-Striebel (RTS) smoother and the less accurate unbiased FIR smoother. With uncertainties and errors in noise covariances, ML FIR smoothing is significantly superior to RTS smoothing. It is also shown experimentally that ML FIR smoothing is more robust than RTS smoothing against measurement outliers. |
|---|---|
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2021.3127677 |