Deep Road Scene Understanding
Road scene understanding is a difficult task in autonomous driving. In this letter, we propose a novel deep encoder-decoder architecture for road scene understanding in an end-to-end manner. This core trainable understanding engine includes an encoder network, a decoder network with two streams, and...
Uložené v:
| Vydané v: | IEEE signal processing letters Ročník 26; číslo 4; s. 587 - 591 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.04.2019
|
| Predmet: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Road scene understanding is a difficult task in autonomous driving. In this letter, we propose a novel deep encoder-decoder architecture for road scene understanding in an end-to-end manner. This core trainable understanding engine includes an encoder network, a decoder network with two streams, and a pixel-level fusion network with classification layer. The encoder network is composed of the front-end model of the classical convolution neural network, VGGNet. The decoder network with two streams includes multi-scale skip connection modules to reduce the down-scaling effect. Finally, a fusion network fuses the two-level information from the two streams of the decoder network for precise pixel-level classification. Additionally, the convolution layer is added to each skip connection module to increase the depth of the architecture. Our architecture achieves outstanding performance on the publicly available CamVid dataset and significantly outperforms previous architectures. This deep architecture is ideal for road scene understanding. |
|---|---|
| ISSN: | 1070-9908 1558-2361 |
| DOI: | 10.1109/LSP.2019.2896793 |