Design of an Intelligent Processing System for Business Data Analysis Based on Improved Clustering Algorithm

In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science Vol. 228; pp. 1215 - 1224
Main Author: Wang, Ning
Format: Journal Article
Language:English
Published: Elsevier B.V 2023
Subjects:
ISSN:1877-0509, 1877-0509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business data analysis can be efficiently resolved by enhancing clustering algorithms, resulting in the provision of more intelligent, thorough, and precise business data analysis services for businesses and organizations. The improved clustering algorithm is compared with the traditional clustering algorithm to analyze the experimental data, the results showed that the maximum clustering effect of the improved clustering algorithm was above 80%, the highest robustness was 91.65%, and the highest point in algorithm performance was 90.97%. From these three aspects, it can be seen that improved clustering algorithms have more advantages than traditional clustering algorithms. Therefore, improving clustering algorithms can make business data processing more efficient, accurate, and reliable, providing enterprises and organizations with higher quality business data analysis services.
AbstractList In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business data analysis can be efficiently resolved by enhancing clustering algorithms, resulting in the provision of more intelligent, thorough, and precise business data analysis services for businesses and organizations. The improved clustering algorithm is compared with the traditional clustering algorithm to analyze the experimental data, the results showed that the maximum clustering effect of the improved clustering algorithm was above 80%, the highest robustness was 91.65%, and the highest point in algorithm performance was 90.97%. From these three aspects, it can be seen that improved clustering algorithms have more advantages than traditional clustering algorithms. Therefore, improving clustering algorithms can make business data processing more efficient, accurate, and reliable, providing enterprises and organizations with higher quality business data analysis services.
Author Wang, Ning
Author_xml – sequence: 1
  givenname: Ning
  surname: Wang
  fullname: Wang, Ning
  email: 18093273869@163.com
  organization: Central South University, Changsha 410083, Hunan, China
BookMark eNqFkEtLAzEUhYNUsNb-Ajf5A1OTTueRhYs-fBQKCuo6ZJKbMWUmKUks9N-bWhfiQu_mHg58h3vPJRpYZwGha0omlNDyZjvZeSfDZEqm-YTSZBZnaEjrqspIQdjgh75A4xC2JE1e14xWQ9StIJjWYqexsHhtI3SdacFG_JxCIQRjW_xyCBF6rJ3Hi4_kJBuvRBR4bkV3CCbghQigsEsJfTpmn_Sy-0iQP-LzrnXexPf-Cp1r0QUYf-8Reru_e10-Zpunh_VyvsnktMyLTDGWl2UNVJe51loxqZSgVNV5DbIRNWMKZrrRQItKkKYmihWKNqVmYqZmKWKE2ClXeheCB82liSIaZ6MXpuOU8GNzfMu_muPH5jilySwSm_9id970wh_-oW5PFKS39gY8D9KAlaCMBxm5cuZP_hM0rI2_
CitedBy_id crossref_primary_10_32782_dees_17_61
Cites_doi 10.1109/TKDE.2018.2867197
10.33166/AETiC.2021.05.007
10.1109/TSC.2016.2589243
10.1049/iet-rpg.2017.0422
10.17159/2413-3051/2018/v29i2a4338
10.1049/iet-cta.2017.0847
10.1007/s11424-018-7269-7
10.1051/jnwpu/20213930510
10.1108/IJOEM-05-2021-0769
10.14801/jkiit.2021.19.1.55
10.1007/s11276-017-1592-0
10.3233/JIFS-179879
10.1515/jisys-2022-0007
10.2478/amns.2020.1.00001
10.1021/acs.est.2c05712
10.1166/asl.2018.10665
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2023.11.105
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1224
ExternalDocumentID 10_1016_j_procs_2023_11_105
S1877050923019361
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2635-d993668e1f63fffd9cdda11d838ecba899de4fbfe157a0b80d95d1b6f9a4d4263
ISSN 1877-0509
IngestDate Sat Nov 29 03:07:55 EST 2025
Tue Nov 18 22:36:56 EST 2025
Sat Sep 14 18:13:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Intelligent Processing System
Traditional Clustering Algorithm
Improved Clustering Algorithm
Business Data Analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2635-d993668e1f63fffd9cdda11d838ecba899de4fbfe157a0b80d95d1b6f9a4d4263
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2023.11.105
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2023_11_105
crossref_primary_10_1016_j_procs_2023_11_105
elsevier_sciencedirect_doi_10_1016_j_procs_2023_11_105
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Moertini, Ariel (bib0011) 2020; 98
Liu, Liu, Yu (bib0012) 2019; 2019
Ye, Wang, Zhang (bib0021) 2022; 56
Zhang, Wang, Yang (bib0014) 2019; 25
Govender (bib0008) 2018; 29
Liu, Ling (bib0003) 2019; 5
Marozzo, Talia, Trunfio (bib0017) 2018; 11
Hamdan, Aziguli, Zhang (bib0022) 2022; 17
Marco (bib0018) 2018; 2308
Lee (bib0010) 2021; 19
Leahy, Gallagher, O'Donovan (bib0007) 2018; 12
Chaisoong, Tirakoat, Jareanpon (bib0020) 2021; 15
Wang, Hao, Sharma (bib0002) 2022; 31
Bejos, Feliciano-Avelino, Martínez-Trinidad (bib0004) 2020; 39
Cheng, Hu, Yang (bib0013) 2019; 31
Nohuddin, Zainol, Zarim (bib0009) 2018; 24
Wang, Zhang, Huang (bib0001) 2021; 39
Nohuddin, Zainol, Hijazi (bib0019) 2021; 5
Xie, Liu, Wei (bib0006) 2020; 5
Chang-Jiang, Liu (bib0015) 2018; 31
Zhang, Liu, Wang (bib0005) 2020; 2020
Li, Liu (bib0016) 2018; 12
Xie (10.1016/j.procs.2023.11.105_bib0006) 2020; 5
Ye (10.1016/j.procs.2023.11.105_bib0021) 2022; 56
Nohuddin (10.1016/j.procs.2023.11.105_bib0009) 2018; 24
Zhang (10.1016/j.procs.2023.11.105_bib0005) 2020; 2020
Moertini (10.1016/j.procs.2023.11.105_bib0011) 2020; 98
Wang (10.1016/j.procs.2023.11.105_bib0002) 2022; 31
Bejos (10.1016/j.procs.2023.11.105_bib0004) 2020; 39
Chaisoong (10.1016/j.procs.2023.11.105_bib0020) 2021; 15
Marco (10.1016/j.procs.2023.11.105_bib0018) 2018; 2308
Hamdan (10.1016/j.procs.2023.11.105_bib0022) 2022; 17
Wang (10.1016/j.procs.2023.11.105_bib0001) 2021; 39
Nohuddin (10.1016/j.procs.2023.11.105_bib0019) 2021; 5
Govender (10.1016/j.procs.2023.11.105_bib0008) 2018; 29
Cheng (10.1016/j.procs.2023.11.105_bib0013) 2019; 31
Zhang (10.1016/j.procs.2023.11.105_bib0014) 2019; 25
Leahy (10.1016/j.procs.2023.11.105_bib0007) 2018; 12
Liu (10.1016/j.procs.2023.11.105_bib0003) 2019; 5
Lee (10.1016/j.procs.2023.11.105_bib0010) 2021; 19
Li (10.1016/j.procs.2023.11.105_bib0016) 2018; 12
Chang-Jiang (10.1016/j.procs.2023.11.105_bib0015) 2018; 31
Marozzo (10.1016/j.procs.2023.11.105_bib0017) 2018; 11
Liu (10.1016/j.procs.2023.11.105_bib0012) 2019; 2019
References_xml – volume: 25
  start-page: 791
  year: 2019
  end-page: 803
  ident: bib0014
  article-title: A novel user behavior analysis and prediction algorithm based on mobile social environment
  publication-title: Wireless Networks
– volume: 19
  start-page: 55
  year: 2021
  end-page: 61
  ident: bib0010
  article-title: A Study on Analytical Machine Learning Method Applying Discretization and Hierarchical Clustering Algorithm
  publication-title: The Journal of Korean Institute of Information Technology
– volume: 39
  start-page: 510
  year: 2021
  end-page: 520
  ident: bib0001
  article-title: Single-chip multi-processing architecture for spaceborne SAR imaging and intelligent processing
  publication-title: Journal of Northwestern Polytechnical University
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0005
  article-title: Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae Search with Damping Factor
  publication-title: Computational Intelligence and Neuroscience
– volume: 15
  start-page: 915
  year: 2021
  end-page: 923
  ident: bib0020
  article-title: TOURIST INFORMATION-SEEKING BEHAVIOURS USING ASSOCIATION RULE MINING
  publication-title: ICIC Express Letters
– volume: 31
  start-page: 87
  year: 2018
  end-page: 102
  ident: bib0015
  article-title: Data-Driven Leader-Follower Output Synchronization for Networked Non-Linear Multi-Agent Systems with Switching Topology and Time-Varying Delays
  publication-title: Journal of Systems Science & Complexity
– volume: 56
  start-page: 16665
  year: 2022
  end-page: 16675
  ident: bib0021
  article-title: Diagnosing the Model Bias in Simulating Daily Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry Deposition and Cloud Optical Depth
  publication-title: Environmental science & technology
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0012
  article-title: A Novel Local Density Hierarchical Clustering Algorithm Based on Reverse Nearest Neighbors
  publication-title: Mathematical Problems in Engineering
– volume: 5
  start-page: 278
  year: 2019
  end-page: 287
  ident: bib0003
  article-title: Intelligent RGV Dynamic Scheduling Strategy Based on Greedy Algorithm
  publication-title: World Scientific Research Journal
– volume: 5
  start-page: 1
  year: 2020
  end-page: 10
  ident: bib0006
  article-title: Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data
  publication-title: Applied Mathematics and Nonlinear Sciences
– volume: 12
  start-page: 1146
  year: 2018
  end-page: 1154
  ident: bib0007
  article-title: Cluster Analysis of Wind Turbine Alarms for Characterising and Classifying Stoppages
  publication-title: IET Renewable Power Generation
– volume: 24
  start-page: 951
  year: 2018
  end-page: 955
  ident: bib0009
  article-title: Trend Cluster Analysis of Wave Data for Renewable Energy
  publication-title: Advanced Science Letters
– volume: 5
  start-page: 60
  year: 2021
  end-page: 68
  ident: bib0019
  article-title: Study of B40 Schoolchildren Lifestyles and Academic Performance using Association Rule Mining
  publication-title: Annals of Emerging Technologies in Computing
– volume: 98
  start-page: 3559
  year: 2020
  end-page: 3581
  ident: bib0011
  article-title: SCALABLE PARALLEL BIG DATA SUMMARIZATION TECHNIQUE BASED ON HIERARCHICAL CLUSTERING ALGORITHM
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 31
  start-page: 177
  year: 2022
  end-page: 192
  ident: bib0002
  article-title: Automatic control of computer application data processing system based on artificial intelligence
  publication-title: Journal of Intelligent Systems
– volume: 31
  start-page: 1822
  year: 2019
  end-page: 1835
  ident: bib0013
  article-title: Utilization-Aware Trip Advisor in Bike-Sharing Systems Based on User Behavior Analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 39
  start-page: 2137
  year: 2020
  end-page: 2145
  ident: bib0004
  article-title: Improved fast partitional clustering algorithm for text clustering
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 12
  start-page: 1773
  year: 2018
  end-page: 1779
  ident: bib0016
  article-title: Data-driven consensus for non-linear networked multi-agent systems with switching topology and time-varying delays
  publication-title: Iet Control Theory & Applications
– volume: 2308
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0018
  article-title: Studying Patterns of Use of Transport Modes through Data Mining: Application to U.S. National Household Travel Survey Data Set
  publication-title: Transportation Research Record
– volume: 17
  start-page: 1008
  year: 2022
  end-page: 1029
  ident: bib0022
  article-title: A machine learning method to predict the technology adoption of blockchain in Palestinian firms
  publication-title: International Journal of Emerging Markets
– volume: 29
  start-page: 63
  year: 2018
  end-page: 76
  ident: bib0008
  article-title: Cluster analysis for classification and forecasting of solar irradiance in Durban
  publication-title: South Africa. Journal of Energy in Southern Africa
– volume: 11
  start-page: 480
  year: 2018
  end-page: 492
  ident: bib0017
  article-title: A Workflow Management System for Scalable Data Mining on Clouds
  publication-title: IEEE Transactions on Services Computing
– volume: 31
  start-page: 1822
  issue: 9
  year: 2019
  ident: 10.1016/j.procs.2023.11.105_bib0013
  article-title: Utilization-Aware Trip Advisor in Bike-Sharing Systems Based on User Behavior Analysis
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2867197
– volume: 5
  start-page: 60
  issue: 5
  year: 2021
  ident: 10.1016/j.procs.2023.11.105_bib0019
  article-title: Study of B40 Schoolchildren Lifestyles and Academic Performance using Association Rule Mining
  publication-title: Annals of Emerging Technologies in Computing
  doi: 10.33166/AETiC.2021.05.007
– volume: 2020
  start-page: 1
  issue: 23
  year: 2020
  ident: 10.1016/j.procs.2023.11.105_bib0005
  article-title: Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae Search with Damping Factor
  publication-title: Computational Intelligence and Neuroscience
– volume: 11
  start-page: 480
  issue: 3
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0017
  article-title: A Workflow Management System for Scalable Data Mining on Clouds
  publication-title: IEEE Transactions on Services Computing
  doi: 10.1109/TSC.2016.2589243
– volume: 12
  start-page: 1146
  issue: 10
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0007
  article-title: Cluster Analysis of Wind Turbine Alarms for Characterising and Classifying Stoppages
  publication-title: IET Renewable Power Generation
  doi: 10.1049/iet-rpg.2017.0422
– volume: 29
  start-page: 63
  issue: 2
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0008
  article-title: Cluster analysis for classification and forecasting of solar irradiance in Durban
  publication-title: South Africa. Journal of Energy in Southern Africa
  doi: 10.17159/2413-3051/2018/v29i2a4338
– volume: 2308
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0018
  article-title: Studying Patterns of Use of Transport Modes through Data Mining: Application to U.S. National Household Travel Survey Data Set
  publication-title: Transportation Research Record
– volume: 12
  start-page: 1773
  issue: 12
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0016
  article-title: Data-driven consensus for non-linear networked multi-agent systems with switching topology and time-varying delays
  publication-title: Iet Control Theory & Applications
  doi: 10.1049/iet-cta.2017.0847
– volume: 31
  start-page: 87
  issue: 001
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0015
  article-title: Data-Driven Leader-Follower Output Synchronization for Networked Non-Linear Multi-Agent Systems with Switching Topology and Time-Varying Delays
  publication-title: Journal of Systems Science & Complexity
  doi: 10.1007/s11424-018-7269-7
– volume: 39
  start-page: 510
  issue: 3
  year: 2021
  ident: 10.1016/j.procs.2023.11.105_bib0001
  article-title: Single-chip multi-processing architecture for spaceborne SAR imaging and intelligent processing
  publication-title: Journal of Northwestern Polytechnical University
  doi: 10.1051/jnwpu/20213930510
– volume: 17
  start-page: 1008
  issue: 4
  year: 2022
  ident: 10.1016/j.procs.2023.11.105_bib0022
  article-title: A machine learning method to predict the technology adoption of blockchain in Palestinian firms
  publication-title: International Journal of Emerging Markets
  doi: 10.1108/IJOEM-05-2021-0769
– volume: 19
  start-page: 55
  issue: 1
  year: 2021
  ident: 10.1016/j.procs.2023.11.105_bib0010
  article-title: A Study on Analytical Machine Learning Method Applying Discretization and Hierarchical Clustering Algorithm
  publication-title: The Journal of Korean Institute of Information Technology
  doi: 10.14801/jkiit.2021.19.1.55
– volume: 25
  start-page: 791
  issue: 2
  year: 2019
  ident: 10.1016/j.procs.2023.11.105_bib0014
  article-title: A novel user behavior analysis and prediction algorithm based on mobile social environment
  publication-title: Wireless Networks
  doi: 10.1007/s11276-017-1592-0
– volume: 98
  start-page: 3559
  issue: 21
  year: 2020
  ident: 10.1016/j.procs.2023.11.105_bib0011
  article-title: SCALABLE PARALLEL BIG DATA SUMMARIZATION TECHNIQUE BASED ON HIERARCHICAL CLUSTERING ALGORITHM
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 39
  start-page: 2137
  issue: 2
  year: 2020
  ident: 10.1016/j.procs.2023.11.105_bib0004
  article-title: Improved fast partitional clustering algorithm for text clustering
  publication-title: Journal of Intelligent and Fuzzy Systems
  doi: 10.3233/JIFS-179879
– volume: 31
  start-page: 177
  issue: 1
  year: 2022
  ident: 10.1016/j.procs.2023.11.105_bib0002
  article-title: Automatic control of computer application data processing system based on artificial intelligence
  publication-title: Journal of Intelligent Systems
  doi: 10.1515/jisys-2022-0007
– volume: 5
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.procs.2023.11.105_bib0006
  article-title: Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data
  publication-title: Applied Mathematics and Nonlinear Sciences
  doi: 10.2478/amns.2020.1.00001
– volume: 56
  start-page: 16665
  issue: 23
  year: 2022
  ident: 10.1016/j.procs.2023.11.105_bib0021
  article-title: Diagnosing the Model Bias in Simulating Daily Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry Deposition and Cloud Optical Depth
  publication-title: Environmental science & technology
  doi: 10.1021/acs.est.2c05712
– volume: 15
  start-page: 915
  issue: 9
  year: 2021
  ident: 10.1016/j.procs.2023.11.105_bib0020
  article-title: TOURIST INFORMATION-SEEKING BEHAVIOURS USING ASSOCIATION RULE MINING
  publication-title: ICIC Express Letters
– volume: 5
  start-page: 278
  issue: 9
  year: 2019
  ident: 10.1016/j.procs.2023.11.105_bib0003
  article-title: Intelligent RGV Dynamic Scheduling Strategy Based on Greedy Algorithm
  publication-title: World Scientific Research Journal
– volume: 2019
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.procs.2023.11.105_bib0012
  article-title: A Novel Local Density Hierarchical Clustering Algorithm Based on Reverse Nearest Neighbors
  publication-title: Mathematical Problems in Engineering
– volume: 24
  start-page: 951
  issue: 2
  year: 2018
  ident: 10.1016/j.procs.2023.11.105_bib0009
  article-title: Trend Cluster Analysis of Wave Data for Renewable Energy
  publication-title: Advanced Science Letters
  doi: 10.1166/asl.2018.10665
SSID ssj0000388917
Score 2.2802222
Snippet In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1215
SubjectTerms Business Data Analysis
Improved Clustering Algorithm
Intelligent Processing System
Traditional Clustering Algorithm
Title Design of an Intelligent Processing System for Business Data Analysis Based on Improved Clustering Algorithm
URI https://dx.doi.org/10.1016/j.procs.2023.11.105
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELa6sIe98Npd8ZYP3JZI5FHHPvIUp4oDSJw2imObh7IpKgFx4rcz40dSQVUtBy5RazWTtvNpZjye-YaQPcGzKhuqLKoMtuTkTEalRiLIVGU4v8gIKe2wiXw04tfX4mIw-Bt6YZ7rvGn4y4t4-FJVwxooG1tnP6HuTigswGtQOlxB7XD9L8Wf2JoMe77f-C4RZNxsQ0-ApeC2_M22xLCrfD8p27LnKDkC76bwJMFlHTAPXD8hqYJNo9Q348lde_tvOrS14gFttkodB0X88d61z9k7uzIK3tInG1wnsLeMPM8jJItxjmPGmjeniW_2dgYRySumnCue48003C6HcI9uo0IW9SQFY45DiHs_Fc7m37mvrqgw1KvdF1ZIgUJggwOLw29kMclh64Slna99Dg6ZcIQdytz9kkBMZUsAP3yZ2cHLVEByuUKW_E6CHjoErJKBbtbIcpjSQb3R_klqBwg6NrRs6BQgaA8I6gBBARA0AIIiIGgABLWAoGOQ4AFBe0DQDhC_yNXZ6eXxeeRnbEQV0hBFCuJTxriODUuNMUpUSpVxrHjKdSVL2I0rnRlpdDzMywPJD5QYqlgyI8pMIdn_b7LQjBu9TqhONUs4zqHKWSa5lkJDdBgzrlIQaOINkoQ_r6g8AT3OQamLOZrbIPvdTQ-Of2X-x1nQSuFB7kLDAoA278bNzz1ni_zAdy4Xt00W2smT3iHfq-f27nGya1H2Bjrflkk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+Intelligent+Processing+System+for+Business+Data+Analysis+Based+on+Improved+Clustering+Algorithm&rft.jtitle=Procedia+computer+science&rft.au=Wang%2C+Ning&rft.date=2023&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=228&rft.spage=1215&rft.epage=1224&rft_id=info:doi/10.1016%2Fj.procs.2023.11.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2023_11_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon