Design of an Intelligent Processing System for Business Data Analysis Based on Improved Clustering Algorithm
In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business...
Saved in:
| Published in: | Procedia computer science Vol. 228; pp. 1215 - 1224 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
2023
|
| Subjects: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business data analysis can be efficiently resolved by enhancing clustering algorithms, resulting in the provision of more intelligent, thorough, and precise business data analysis services for businesses and organizations. The improved clustering algorithm is compared with the traditional clustering algorithm to analyze the experimental data, the results showed that the maximum clustering effect of the improved clustering algorithm was above 80%, the highest robustness was 91.65%, and the highest point in algorithm performance was 90.97%. From these three aspects, it can be seen that improved clustering algorithms have more advantages than traditional clustering algorithms. Therefore, improving clustering algorithms can make business data processing more efficient, accurate, and reliable, providing enterprises and organizations with higher quality business data analysis services. |
|---|---|
| AbstractList | In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated the design of an intelligent processing system for business data analysis based on improved clustering algorithms. Some issues with business data analysis can be efficiently resolved by enhancing clustering algorithms, resulting in the provision of more intelligent, thorough, and precise business data analysis services for businesses and organizations. The improved clustering algorithm is compared with the traditional clustering algorithm to analyze the experimental data, the results showed that the maximum clustering effect of the improved clustering algorithm was above 80%, the highest robustness was 91.65%, and the highest point in algorithm performance was 90.97%. From these three aspects, it can be seen that improved clustering algorithms have more advantages than traditional clustering algorithms. Therefore, improving clustering algorithms can make business data processing more efficient, accurate, and reliable, providing enterprises and organizations with higher quality business data analysis services. |
| Author | Wang, Ning |
| Author_xml | – sequence: 1 givenname: Ning surname: Wang fullname: Wang, Ning email: 18093273869@163.com organization: Central South University, Changsha 410083, Hunan, China |
| BookMark | eNqFkEtLAzEUhYNUsNb-Ajf5A1OTTueRhYs-fBQKCuo6ZJKbMWUmKUks9N-bWhfiQu_mHg58h3vPJRpYZwGha0omlNDyZjvZeSfDZEqm-YTSZBZnaEjrqspIQdjgh75A4xC2JE1e14xWQ9StIJjWYqexsHhtI3SdacFG_JxCIQRjW_xyCBF6rJ3Hi4_kJBuvRBR4bkV3CCbghQigsEsJfTpmn_Sy-0iQP-LzrnXexPf-Cp1r0QUYf-8Reru_e10-Zpunh_VyvsnktMyLTDGWl2UNVJe51loxqZSgVNV5DbIRNWMKZrrRQItKkKYmihWKNqVmYqZmKWKE2ClXeheCB82liSIaZ6MXpuOU8GNzfMu_muPH5jilySwSm_9id970wh_-oW5PFKS39gY8D9KAlaCMBxm5cuZP_hM0rI2_ |
| CitedBy_id | crossref_primary_10_32782_dees_17_61 |
| Cites_doi | 10.1109/TKDE.2018.2867197 10.33166/AETiC.2021.05.007 10.1109/TSC.2016.2589243 10.1049/iet-rpg.2017.0422 10.17159/2413-3051/2018/v29i2a4338 10.1049/iet-cta.2017.0847 10.1007/s11424-018-7269-7 10.1051/jnwpu/20213930510 10.1108/IJOEM-05-2021-0769 10.14801/jkiit.2021.19.1.55 10.1007/s11276-017-1592-0 10.3233/JIFS-179879 10.1515/jisys-2022-0007 10.2478/amns.2020.1.00001 10.1021/acs.est.2c05712 10.1166/asl.2018.10665 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2023.11.105 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 1224 |
| ExternalDocumentID | 10_1016_j_procs_2023_11_105 S1877050923019361 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c2635-d993668e1f63fffd9cdda11d838ecba899de4fbfe157a0b80d95d1b6f9a4d4263 |
| ISSN | 1877-0509 |
| IngestDate | Sat Nov 29 03:07:55 EST 2025 Tue Nov 18 22:36:56 EST 2025 Sat Sep 14 18:13:16 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intelligent Processing System Traditional Clustering Algorithm Improved Clustering Algorithm Business Data Analysis |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2635-d993668e1f63fffd9cdda11d838ecba899de4fbfe157a0b80d95d1b6f9a4d4263 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2023.11.105 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_procs_2023_11_105 crossref_primary_10_1016_j_procs_2023_11_105 elsevier_sciencedirect_doi_10_1016_j_procs_2023_11_105 |
| PublicationCentury | 2000 |
| PublicationDate | 2023 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Moertini, Ariel (bib0011) 2020; 98 Liu, Liu, Yu (bib0012) 2019; 2019 Ye, Wang, Zhang (bib0021) 2022; 56 Zhang, Wang, Yang (bib0014) 2019; 25 Govender (bib0008) 2018; 29 Liu, Ling (bib0003) 2019; 5 Marozzo, Talia, Trunfio (bib0017) 2018; 11 Hamdan, Aziguli, Zhang (bib0022) 2022; 17 Marco (bib0018) 2018; 2308 Lee (bib0010) 2021; 19 Leahy, Gallagher, O'Donovan (bib0007) 2018; 12 Chaisoong, Tirakoat, Jareanpon (bib0020) 2021; 15 Wang, Hao, Sharma (bib0002) 2022; 31 Bejos, Feliciano-Avelino, Martínez-Trinidad (bib0004) 2020; 39 Cheng, Hu, Yang (bib0013) 2019; 31 Nohuddin, Zainol, Zarim (bib0009) 2018; 24 Wang, Zhang, Huang (bib0001) 2021; 39 Nohuddin, Zainol, Hijazi (bib0019) 2021; 5 Xie, Liu, Wei (bib0006) 2020; 5 Chang-Jiang, Liu (bib0015) 2018; 31 Zhang, Liu, Wang (bib0005) 2020; 2020 Li, Liu (bib0016) 2018; 12 Xie (10.1016/j.procs.2023.11.105_bib0006) 2020; 5 Ye (10.1016/j.procs.2023.11.105_bib0021) 2022; 56 Nohuddin (10.1016/j.procs.2023.11.105_bib0009) 2018; 24 Zhang (10.1016/j.procs.2023.11.105_bib0005) 2020; 2020 Moertini (10.1016/j.procs.2023.11.105_bib0011) 2020; 98 Wang (10.1016/j.procs.2023.11.105_bib0002) 2022; 31 Bejos (10.1016/j.procs.2023.11.105_bib0004) 2020; 39 Chaisoong (10.1016/j.procs.2023.11.105_bib0020) 2021; 15 Marco (10.1016/j.procs.2023.11.105_bib0018) 2018; 2308 Hamdan (10.1016/j.procs.2023.11.105_bib0022) 2022; 17 Wang (10.1016/j.procs.2023.11.105_bib0001) 2021; 39 Nohuddin (10.1016/j.procs.2023.11.105_bib0019) 2021; 5 Govender (10.1016/j.procs.2023.11.105_bib0008) 2018; 29 Cheng (10.1016/j.procs.2023.11.105_bib0013) 2019; 31 Zhang (10.1016/j.procs.2023.11.105_bib0014) 2019; 25 Leahy (10.1016/j.procs.2023.11.105_bib0007) 2018; 12 Liu (10.1016/j.procs.2023.11.105_bib0003) 2019; 5 Lee (10.1016/j.procs.2023.11.105_bib0010) 2021; 19 Li (10.1016/j.procs.2023.11.105_bib0016) 2018; 12 Chang-Jiang (10.1016/j.procs.2023.11.105_bib0015) 2018; 31 Marozzo (10.1016/j.procs.2023.11.105_bib0017) 2018; 11 Liu (10.1016/j.procs.2023.11.105_bib0012) 2019; 2019 |
| References_xml | – volume: 25 start-page: 791 year: 2019 end-page: 803 ident: bib0014 article-title: A novel user behavior analysis and prediction algorithm based on mobile social environment publication-title: Wireless Networks – volume: 19 start-page: 55 year: 2021 end-page: 61 ident: bib0010 article-title: A Study on Analytical Machine Learning Method Applying Discretization and Hierarchical Clustering Algorithm publication-title: The Journal of Korean Institute of Information Technology – volume: 39 start-page: 510 year: 2021 end-page: 520 ident: bib0001 article-title: Single-chip multi-processing architecture for spaceborne SAR imaging and intelligent processing publication-title: Journal of Northwestern Polytechnical University – volume: 2020 start-page: 1 year: 2020 end-page: 9 ident: bib0005 article-title: Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae Search with Damping Factor publication-title: Computational Intelligence and Neuroscience – volume: 15 start-page: 915 year: 2021 end-page: 923 ident: bib0020 article-title: TOURIST INFORMATION-SEEKING BEHAVIOURS USING ASSOCIATION RULE MINING publication-title: ICIC Express Letters – volume: 31 start-page: 87 year: 2018 end-page: 102 ident: bib0015 article-title: Data-Driven Leader-Follower Output Synchronization for Networked Non-Linear Multi-Agent Systems with Switching Topology and Time-Varying Delays publication-title: Journal of Systems Science & Complexity – volume: 56 start-page: 16665 year: 2022 end-page: 16675 ident: bib0021 article-title: Diagnosing the Model Bias in Simulating Daily Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry Deposition and Cloud Optical Depth publication-title: Environmental science & technology – volume: 2019 start-page: 1 year: 2019 end-page: 10 ident: bib0012 article-title: A Novel Local Density Hierarchical Clustering Algorithm Based on Reverse Nearest Neighbors publication-title: Mathematical Problems in Engineering – volume: 5 start-page: 278 year: 2019 end-page: 287 ident: bib0003 article-title: Intelligent RGV Dynamic Scheduling Strategy Based on Greedy Algorithm publication-title: World Scientific Research Journal – volume: 5 start-page: 1 year: 2020 end-page: 10 ident: bib0006 article-title: Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data publication-title: Applied Mathematics and Nonlinear Sciences – volume: 12 start-page: 1146 year: 2018 end-page: 1154 ident: bib0007 article-title: Cluster Analysis of Wind Turbine Alarms for Characterising and Classifying Stoppages publication-title: IET Renewable Power Generation – volume: 24 start-page: 951 year: 2018 end-page: 955 ident: bib0009 article-title: Trend Cluster Analysis of Wave Data for Renewable Energy publication-title: Advanced Science Letters – volume: 5 start-page: 60 year: 2021 end-page: 68 ident: bib0019 article-title: Study of B40 Schoolchildren Lifestyles and Academic Performance using Association Rule Mining publication-title: Annals of Emerging Technologies in Computing – volume: 98 start-page: 3559 year: 2020 end-page: 3581 ident: bib0011 article-title: SCALABLE PARALLEL BIG DATA SUMMARIZATION TECHNIQUE BASED ON HIERARCHICAL CLUSTERING ALGORITHM publication-title: Journal of Theoretical and Applied Information Technology – volume: 31 start-page: 177 year: 2022 end-page: 192 ident: bib0002 article-title: Automatic control of computer application data processing system based on artificial intelligence publication-title: Journal of Intelligent Systems – volume: 31 start-page: 1822 year: 2019 end-page: 1835 ident: bib0013 article-title: Utilization-Aware Trip Advisor in Bike-Sharing Systems Based on User Behavior Analysis publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 39 start-page: 2137 year: 2020 end-page: 2145 ident: bib0004 article-title: Improved fast partitional clustering algorithm for text clustering publication-title: Journal of Intelligent and Fuzzy Systems – volume: 12 start-page: 1773 year: 2018 end-page: 1779 ident: bib0016 article-title: Data-driven consensus for non-linear networked multi-agent systems with switching topology and time-varying delays publication-title: Iet Control Theory & Applications – volume: 2308 start-page: 1 year: 2018 end-page: 9 ident: bib0018 article-title: Studying Patterns of Use of Transport Modes through Data Mining: Application to U.S. National Household Travel Survey Data Set publication-title: Transportation Research Record – volume: 17 start-page: 1008 year: 2022 end-page: 1029 ident: bib0022 article-title: A machine learning method to predict the technology adoption of blockchain in Palestinian firms publication-title: International Journal of Emerging Markets – volume: 29 start-page: 63 year: 2018 end-page: 76 ident: bib0008 article-title: Cluster analysis for classification and forecasting of solar irradiance in Durban publication-title: South Africa. Journal of Energy in Southern Africa – volume: 11 start-page: 480 year: 2018 end-page: 492 ident: bib0017 article-title: A Workflow Management System for Scalable Data Mining on Clouds publication-title: IEEE Transactions on Services Computing – volume: 31 start-page: 1822 issue: 9 year: 2019 ident: 10.1016/j.procs.2023.11.105_bib0013 article-title: Utilization-Aware Trip Advisor in Bike-Sharing Systems Based on User Behavior Analysis publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2867197 – volume: 5 start-page: 60 issue: 5 year: 2021 ident: 10.1016/j.procs.2023.11.105_bib0019 article-title: Study of B40 Schoolchildren Lifestyles and Academic Performance using Association Rule Mining publication-title: Annals of Emerging Technologies in Computing doi: 10.33166/AETiC.2021.05.007 – volume: 2020 start-page: 1 issue: 23 year: 2020 ident: 10.1016/j.procs.2023.11.105_bib0005 article-title: Spectral Clustering Algorithm Based on Improved Gaussian Kernel Function and Beetle Antennae Search with Damping Factor publication-title: Computational Intelligence and Neuroscience – volume: 11 start-page: 480 issue: 3 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0017 article-title: A Workflow Management System for Scalable Data Mining on Clouds publication-title: IEEE Transactions on Services Computing doi: 10.1109/TSC.2016.2589243 – volume: 12 start-page: 1146 issue: 10 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0007 article-title: Cluster Analysis of Wind Turbine Alarms for Characterising and Classifying Stoppages publication-title: IET Renewable Power Generation doi: 10.1049/iet-rpg.2017.0422 – volume: 29 start-page: 63 issue: 2 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0008 article-title: Cluster analysis for classification and forecasting of solar irradiance in Durban publication-title: South Africa. Journal of Energy in Southern Africa doi: 10.17159/2413-3051/2018/v29i2a4338 – volume: 2308 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0018 article-title: Studying Patterns of Use of Transport Modes through Data Mining: Application to U.S. National Household Travel Survey Data Set publication-title: Transportation Research Record – volume: 12 start-page: 1773 issue: 12 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0016 article-title: Data-driven consensus for non-linear networked multi-agent systems with switching topology and time-varying delays publication-title: Iet Control Theory & Applications doi: 10.1049/iet-cta.2017.0847 – volume: 31 start-page: 87 issue: 001 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0015 article-title: Data-Driven Leader-Follower Output Synchronization for Networked Non-Linear Multi-Agent Systems with Switching Topology and Time-Varying Delays publication-title: Journal of Systems Science & Complexity doi: 10.1007/s11424-018-7269-7 – volume: 39 start-page: 510 issue: 3 year: 2021 ident: 10.1016/j.procs.2023.11.105_bib0001 article-title: Single-chip multi-processing architecture for spaceborne SAR imaging and intelligent processing publication-title: Journal of Northwestern Polytechnical University doi: 10.1051/jnwpu/20213930510 – volume: 17 start-page: 1008 issue: 4 year: 2022 ident: 10.1016/j.procs.2023.11.105_bib0022 article-title: A machine learning method to predict the technology adoption of blockchain in Palestinian firms publication-title: International Journal of Emerging Markets doi: 10.1108/IJOEM-05-2021-0769 – volume: 19 start-page: 55 issue: 1 year: 2021 ident: 10.1016/j.procs.2023.11.105_bib0010 article-title: A Study on Analytical Machine Learning Method Applying Discretization and Hierarchical Clustering Algorithm publication-title: The Journal of Korean Institute of Information Technology doi: 10.14801/jkiit.2021.19.1.55 – volume: 25 start-page: 791 issue: 2 year: 2019 ident: 10.1016/j.procs.2023.11.105_bib0014 article-title: A novel user behavior analysis and prediction algorithm based on mobile social environment publication-title: Wireless Networks doi: 10.1007/s11276-017-1592-0 – volume: 98 start-page: 3559 issue: 21 year: 2020 ident: 10.1016/j.procs.2023.11.105_bib0011 article-title: SCALABLE PARALLEL BIG DATA SUMMARIZATION TECHNIQUE BASED ON HIERARCHICAL CLUSTERING ALGORITHM publication-title: Journal of Theoretical and Applied Information Technology – volume: 39 start-page: 2137 issue: 2 year: 2020 ident: 10.1016/j.procs.2023.11.105_bib0004 article-title: Improved fast partitional clustering algorithm for text clustering publication-title: Journal of Intelligent and Fuzzy Systems doi: 10.3233/JIFS-179879 – volume: 31 start-page: 177 issue: 1 year: 2022 ident: 10.1016/j.procs.2023.11.105_bib0002 article-title: Automatic control of computer application data processing system based on artificial intelligence publication-title: Journal of Intelligent Systems doi: 10.1515/jisys-2022-0007 – volume: 5 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.procs.2023.11.105_bib0006 article-title: Improvement of the Fast Clustering Algorithm Improved by K-Means in the Big Data publication-title: Applied Mathematics and Nonlinear Sciences doi: 10.2478/amns.2020.1.00001 – volume: 56 start-page: 16665 issue: 23 year: 2022 ident: 10.1016/j.procs.2023.11.105_bib0021 article-title: Diagnosing the Model Bias in Simulating Daily Surface Ozone Variability Using a Machine Learning Method: The Effects of Dry Deposition and Cloud Optical Depth publication-title: Environmental science & technology doi: 10.1021/acs.est.2c05712 – volume: 15 start-page: 915 issue: 9 year: 2021 ident: 10.1016/j.procs.2023.11.105_bib0020 article-title: TOURIST INFORMATION-SEEKING BEHAVIOURS USING ASSOCIATION RULE MINING publication-title: ICIC Express Letters – volume: 5 start-page: 278 issue: 9 year: 2019 ident: 10.1016/j.procs.2023.11.105_bib0003 article-title: Intelligent RGV Dynamic Scheduling Strategy Based on Greedy Algorithm publication-title: World Scientific Research Journal – volume: 2019 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.procs.2023.11.105_bib0012 article-title: A Novel Local Density Hierarchical Clustering Algorithm Based on Reverse Nearest Neighbors publication-title: Mathematical Problems in Engineering – volume: 24 start-page: 951 issue: 2 year: 2018 ident: 10.1016/j.procs.2023.11.105_bib0009 article-title: Trend Cluster Analysis of Wave Data for Renewable Energy publication-title: Advanced Science Letters doi: 10.1166/asl.2018.10665 |
| SSID | ssj0000388917 |
| Score | 2.2802222 |
| Snippet | In order to further optimize the processing of business data and increase the effectiveness and accuracy of business data analysis, this research investigated... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1215 |
| SubjectTerms | Business Data Analysis Improved Clustering Algorithm Intelligent Processing System Traditional Clustering Algorithm |
| Title | Design of an Intelligent Processing System for Business Data Analysis Based on Improved Clustering Algorithm |
| URI | https://dx.doi.org/10.1016/j.procs.2023.11.105 |
| Volume | 228 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9tADD44bocsSR8J8mpxQ7dWgN53GtukRSejQwpkqnC6R5tAkQNHCTzlt4e8h2S0hpEMXQT7YNG2-IHk8ciPhHxIhWE6UyzSlVZRLlIdiUQWUaKTTMWZyptY2WETbDbjFxfVj8nkV-iFuW9Z1_Hlsrr5r6qGNVA2ts4-Q92DUFiA16B0uILa4fokxZ_Zmgx7vt_5LhFk3OxDT4Cl4Lb8zbbEcKh8PxO9GDlKvoB3U3iS4LIOmAdu75BUwaZR2t_zxWX_53o1tLXiAW22Sh0HRXz03nXM2Tu7Mgve0icbXCewt4ycsQjJYpzjWLPmzWnqm72dQUTyihXniud4aw23yyFcoduQyKKeZmDMcQjx6KfC2fxf7msoKgz1ale1FVKjENjgwGKxRV6kDLZOWNr5MObgkAmnskOZh38SiKlsCeA_P2Z98LISkJy_Ijt-J0E_OwS8JhPdvSG7YUoH9Ub7LWkdIOjcUNHRFUDQERDUAYICIGgABEVA0AAIagFB5yDBA4KOgKADIPbIz29fz0-_R37GRiSRhihSEJ-WJdeJKTNjjKqkUiJJFM-4lo2A3bjSuWmMTgom4obHqipU0pSmErlCsv99Mu3mnT4gVJrcgHWHR8l5XolUyCLOUsML7I5ucnZI0vDwaukJ6HEOSltv0Nwh-TTcdOP4VzZ_vAxaqT3IXWhYA9A23Xj0vO85Jtv4zuXiTsi0X9zpd-SlvO8vbxfvLcoeASe4llk |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+Intelligent+Processing+System+for+Business+Data+Analysis+Based+on+Improved+Clustering+Algorithm&rft.jtitle=Procedia+computer+science&rft.au=Wang%2C+Ning&rft.date=2023&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=228&rft.spage=1215&rft.epage=1224&rft_id=info:doi/10.1016%2Fj.procs.2023.11.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2023_11_105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |