Analysis of the impact of the number of edges in connected graphs on the computational complexity of the independent set problem
Under study is the complexity status of the independent set problem in a class of connected graphs that are defined by functional constraints on the number of edges depending on the number of vertices. For every natural number C , this problem is shown to be polynomially solvable in the class of gra...
Uloženo v:
| Vydáno v: | Journal of applied and industrial mathematics Ročník 6; číslo 1; s. 97 - 99 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
SP MAIK Nauka/Interperiodica
01.01.2012
Springer Nature B.V |
| Témata: | |
| ISSN: | 1990-4789, 1990-4797 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Under study is the complexity status of the independent set problem in a class of connected graphs that are defined by functional constraints on the number of edges depending on the number of vertices. For every natural number
C
, this problem is shown to be polynomially solvable in the class of graphs
On the other hand, this problem is proved to be not polynomially solvable in the class of graphs
for every unbounded nondecreasing function
f
(
n
): ℕ → ℕ, such that exponent of this function grows faster than a polynomial function of
n
. The latter result is true if there does not exist a subexponential algorithm for solving the independent set problem. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1990-4789 1990-4797 |
| DOI: | 10.1134/S1990478912010103 |