Heuristics and Metaheuristics for Solving Capacitated Vehicle Routing Problem: An Algorithm Comparison

The Capacitated Vehicle Routing Problem (CVRP) is an optimization problem that involves arranging vehicle routes while considering vehicle capacity. This research aims to compare the effectiveness of several heuristic (Path Cheapest Arc, Path Most Constrained Arc, Savings, Christofides) and metaheur...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 234; s. 494 - 501
Hlavní autori: Muriyatmoko, Dihin, Djunaidy, Arif, Muklason, Ahmad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2024
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Capacitated Vehicle Routing Problem (CVRP) is an optimization problem that involves arranging vehicle routes while considering vehicle capacity. This research aims to compare the effectiveness of several heuristic (Path Cheapest Arc, Path Most Constrained Arc, Savings, Christofides) and metaheuristic (Greedy Descent, Guided Local Search, Simulated Annealing, Tabu Search) algorithms for determining the routing scenarios and vehicle types for faculty transportation between the male campus in Ponorogo and the female campus in Mantingan Ngawi at Universitas Darussalam Gontor. The research involves decision variables for vehicle routing determination and the objective of minimizing the distance traveled. The constraint function includes two options: one vehicle with a capacity of 60 passengers and four vehicles. This research utilizes Google OR Tools with the Python programming language using Google Colab to facilitate the calculation process. The research results indicate that metaheuristic algorithms outperform heuristics for complex case studies (four vehicles). This study recommends using metaheuristic methods, specifically Christofides Guided Local Search and Christofides Simulated Annealing, for determining the best routes with the shortest distance and time. Further research was developed using algorithms such as hyperheuristics or matheuristics.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2024.03.032