Comparison of mini-models based on various clustering algorithms
The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input s...
Gespeichert in:
| Veröffentlicht in: | Procedia computer science Jg. 176; S. 3563 - 3570 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2020
|
| Schlagworte: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input space. Another possible solution is to divide the input space with clustering algorithms. As a result of this process, each data cluster is treated as a separate mini-model domain. The main aim of the article is to create an exhaustive comparison of mini-model methods based on the most well-known clustering algorithms. The work introduces new versions of the mini-model method based on clustering algorithms such as DBSCAN, OPTICS, Mean Shift, spectral clustering and several hierarchical methods. The paper also compares the results with other versions of the MM-method and instance-based learning algorithms. |
|---|---|
| ISSN: | 1877-0509 1877-0509 |
| DOI: | 10.1016/j.procs.2020.09.030 |