Advancements in battery state prediction methods: A comprehensive review of data-driven approaches and degradation mechanisms
Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to...
Uloženo v:
| Vydáno v: | Journal of power sources Ročník 659; s. 238192 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.12.2025
|
| Témata: | |
| ISSN: | 0378-7753 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to provide an extensive overview of state prediction methods and characterization techniques, emphasizing the need for specific data-driven approaches to characterize battery degradation and establish correlations between inputs and outputs. Furthermore, the evaluation of primary anode, cathode, and separator materials in batteries is discussed. The study delves into the significance of both cycle degradation and calendar degradation, providing insights into degradation phenomena and parameters perspectives. Moreover, the roles and characteristics of physical parameters for degradation characterization and state parameters for battery operation status are analyzed. The review extensively examines the strengths and weaknesses of classic and state-of-the-art physics-based models, as well as data-driven models, highlighting critical issues and challenges related to degradation mechanisms, datasets, performance trade-offs, and optimization methods. Additionally, innovative ideas are proposed, and future development directions are discussed.
•Key battery materials and their impact on degradation mechanisms are discussed.•This review examines physical parameters for battery dynamics and state parameters.•This review covers end-to-end prediction method development and future trends.•The review shows the pros and cons of physics-based, data-driven, and fusion models. |
|---|---|
| AbstractList | Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to provide an extensive overview of state prediction methods and characterization techniques, emphasizing the need for specific data-driven approaches to characterize battery degradation and establish correlations between inputs and outputs. Furthermore, the evaluation of primary anode, cathode, and separator materials in batteries is discussed. The study delves into the significance of both cycle degradation and calendar degradation, providing insights into degradation phenomena and parameters perspectives. Moreover, the roles and characteristics of physical parameters for degradation characterization and state parameters for battery operation status are analyzed. The review extensively examines the strengths and weaknesses of classic and state-of-the-art physics-based models, as well as data-driven models, highlighting critical issues and challenges related to degradation mechanisms, datasets, performance trade-offs, and optimization methods. Additionally, innovative ideas are proposed, and future development directions are discussed.
•Key battery materials and their impact on degradation mechanisms are discussed.•This review examines physical parameters for battery dynamics and state parameters.•This review covers end-to-end prediction method development and future trends.•The review shows the pros and cons of physics-based, data-driven, and fusion models. |
| ArticleNumber | 238192 |
| Author | Yuan, Chenbo Wu, Dinglan Zheng, Wentao Jiang, Huan Wang, Shenghan |
| Author_xml | – sequence: 1 givenname: Wentao surname: Zheng fullname: Zheng, Wentao organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China – sequence: 2 givenname: Dinglan surname: Wu fullname: Wu, Dinglan organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China – sequence: 3 givenname: Chenbo surname: Yuan fullname: Yuan, Chenbo organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China – sequence: 4 givenname: Huan surname: Jiang fullname: Jiang, Huan email: jianghuan22@mails.jlu.edu.cn organization: Jilin Police College, Changchun, 130012, China – sequence: 5 givenname: Shenghan orcidid: 0000-0001-9586-2997 surname: Wang fullname: Wang, Shenghan email: shenghan@jlu.edu.cn organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China |
| BookMark | eNqFkMtqwzAQRbVIoUnaXyj6AaeSHMtOVw2hLwh0k72QpVEtU0tGUhOy6L9Xwe26q4G53MPMWaCZ8w4QuqNkRQnl9_2qH_0p-q-wYoRVK1Y2dMNmaE7Kuinquiqv0SLGnhBCaU3m6Hurj9IpGMCliK3DrUwJwhnHJBPgMYC2Klnv8ACp8zo-4C1WfshBBy7aI-AARwsn7A3WMslCh7x0WI5j8FJ1ELF0Gmv4CDLnE0l10tk4xBt0ZeRnhNvfuUSH56fD7rXYv7-87bb7QjFOUwEGKKXc1HXT1FVbgSzbNZcbWm2YpLDmpNQNZDwxmnDeGqNIVbKWKqaaNS2XiE9YFXyMAYwYgx1kOAtKxMWb6MWfN3HxJiZvufg4FSEfl78MIioLWZe2AVQS2tv_ED8YNoJF |
| Cites_doi | 10.1039/D2NR07273D 10.1016/j.est.2023.108045 10.1016/j.jpowsour.2020.228861 10.1016/j.electacta.2021.138294 10.3390/en16052484 10.1109/TIE.2020.2978688 10.1016/j.etran.2019.100034 10.1016/j.est.2016.02.005 10.1109/TIA.2014.2321028 10.1016/j.energy.2016.12.110 10.1038/srep00913 10.3390/en16073096 10.1149/1945-7111/acde10 10.3390/en12142784 10.1149/1945-7111/ac6d13 10.3389/fenrg.2022.937035 10.3390/app10196637 10.1038/s42256-020-0156-7 10.1016/j.nanoen.2020.105516 10.3390/en17071643 10.1002/tee.23287 10.1002/er.6355 10.1016/j.apenergy.2020.115232 10.1109/TTE.2024.3506778 10.1016/j.est.2023.106640 10.3390/en16031420 10.1109/TTE.2020.3017090 10.1038/s41560-021-00787-9 10.3389/fenrg.2023.1059701 10.1016/j.resconrec.2022.106204 10.3390/en16020767 10.3389/fenrg.2022.1033039 10.3390/batteries9030177 10.1016/j.energy.2022.126109 10.1002/er.5413 10.1016/j.ress.2021.107797 10.1038/s41560-020-0575-z 10.1016/j.jmsy.2021.03.019 10.1109/TVT.2019.2932605 10.1109/TPEL.2022.3182135 10.1109/TTE.2019.2944802 10.1016/j.jpowsour.2020.227950 10.1016/j.energy.2021.121233 10.3390/polym13111675 10.1016/j.rser.2020.110015 10.1002/ese3.877 10.1016/j.rser.2021.111004 10.1016/j.jpowsour.2007.09.025 10.1016/j.est.2021.102741 10.1109/TIE.2021.3095815 10.1016/j.jpowsour.2014.07.168 10.1002/er.5383 10.1109/TVT.2023.3234159 10.1109/JESTPE.2021.3133697 10.1016/j.energy.2021.121269 10.3390/en15239165 10.1016/j.isci.2021.102060 10.1016/j.ress.2021.107675 10.1016/j.jpowsour.2006.10.065 10.3390/en16020803 10.1016/j.energy.2021.121022 10.1039/D0TA10378K 10.3390/s23052587 10.1016/j.egyr.2021.02.058 10.1109/TII.2021.3106593 10.1016/j.apenergy.2020.115646 10.1016/j.energy.2018.10.131 10.1109/ACCESS.2019.2947294 10.1038/s41560-019-0405-3 10.1016/j.jpowsour.2022.231560 10.1016/j.rser.2019.109254 10.1016/j.jpowsour.2020.228069 10.1016/j.ress.2023.109361 10.1016/j.conengprac.2023.105451 10.1109/ACCESS.2020.3011625 10.1002/ente.202200600 10.1149/1.1870752 10.1016/j.est.2019.100911 10.1016/j.etran.2019.100005 10.1016/j.jpowsour.2017.05.110 10.1016/j.est.2021.102827 10.1016/j.jpowsour.2020.228983 10.1016/j.microrel.2023.114985 10.1016/j.jpowsour.2022.231127 10.1016/j.rser.2021.111287 10.1038/s41560-019-0356-8 10.1007/s00521-020-05105-0 10.1016/j.energy.2020.119490 10.9728/dcs.2021.22.4.697 10.3390/app11031099 10.1021/acs.chemrev.9b00531 10.1016/j.rser.2016.05.033 10.1002/ente.202201510 10.1016/j.energy.2021.120205 10.1109/TII.2022.3206776 10.1016/j.jpowsour.2019.227228 10.1016/j.ress.2021.107542 10.1016/j.jpowsour.2022.232432 10.1016/j.energy.2019.01.083 10.1177/01423312221143776 10.1007/s41918-022-00147-5 10.1016/j.jclepro.2020.120813 10.1016/j.ensm.2021.05.047 10.1109/TVT.2017.2751613 10.1109/ACCESS.2019.2939593 10.1016/j.aei.2021.101405 10.1038/s41560-019-0428-9 10.3390/app9153012 10.1109/TVT.2020.3039553 10.1021/acs.chemrev.0c00101 10.3390/batteries6030037 10.1109/TIE.2022.3148743 10.3390/batteries9060325 10.1016/j.cej.2022.136245 10.1016/j.jpowsour.2019.227015 10.1016/j.est.2023.107557 10.1038/s41467-020-15235-7 10.1007/s11814-023-1476-1 10.3389/fenrg.2022.905710 10.1016/j.egyr.2023.05.121 10.1002/ese3.973 10.1016/j.est.2018.12.011 10.1016/j.measurement.2020.108052 10.1016/j.jpowsour.2023.232805 10.1002/ese3.460 10.1002/aenm.202100046 10.3390/en18051188 10.1016/j.est.2023.106645 10.3390/su15065014 10.1016/j.energy.2023.128761 10.3390/en12122247 10.1016/j.est.2023.107161 10.3390/batteries9040224 10.1016/j.measurement.2019.07.064 10.1002/er.5002 10.3390/app11104671 10.1002/cite.201800218 10.1016/j.ssi.2019.115193 10.1002/er.6746 10.3390/app10103549 10.1016/j.egyr.2021.05.019 10.3390/en12091685 10.1016/j.energy.2021.120684 10.1109/JESTPE.2021.3130424 10.1007/s11581-023-05072-1 10.1149/1945-7111/acd300 10.1109/TEC.2024.3407136 10.1016/j.psep.2023.02.081 10.1016/j.energy.2021.120851 10.1016/j.est.2023.106788 10.1016/j.est.2023.106790 10.1002/eem2.12501 10.1039/C7CS00863E 10.1109/ACCESS.2019.2905740 10.1016/j.applthermaleng.2023.120303 10.1109/TVT.2021.3087004 10.1016/j.neucom.2019.09.074 10.1016/j.cie.2023.109231 10.1016/j.apenergy.2022.120289 10.1109/ACCESS.2022.3232282 10.1109/TII.2020.3008223 10.3390/s21041087 10.3390/ma15093331 10.3390/en13020375 10.1109/TVT.2020.3024019 10.1039/D2EE03019E 10.1016/j.ress.2018.09.018 10.1109/TIE.2021.3097613 10.1109/JESTPE.2021.3098378 10.1016/j.jpowsour.2022.232586 10.1109/ACCESS.2019.2947843 10.1016/j.est.2025.115485 10.1016/j.jpowsour.2020.228581 10.1016/j.ress.2022.108920 10.1016/j.est.2023.107179 10.1109/TVT.2021.3055811 10.1016/j.est.2023.107589 10.1016/j.jpowsour.2020.228654 10.1016/j.ejor.2010.11.018 10.1038/s41578-019-0165-5 10.3390/e25040646 10.1109/TIE.2020.3034855 10.1002/adma.202106897 10.1016/j.energy.2018.06.169 10.1038/s41578-019-0157-5 10.1016/j.ress.2020.107396 10.1109/TVT.2015.2473841 10.1149/MA2021-0251864mtgabs 10.1016/j.ress.2019.02.011 10.3390/en14238072 10.3390/en13030752 10.3390/en14061732 10.1109/ACCESS.2019.2925468 10.1002/er.3996 10.1016/j.energy.2021.120114 10.1016/j.jclepro.2018.12.041 10.1002/er.6910 10.3390/su12208544 10.1016/j.est.2023.106728 10.1109/TSG.2016.2578950 10.1016/j.etran.2019.100004 10.1002/adma.202108353 10.1021/cm901452z 10.1109/TII.2019.2948018 10.1016/j.jclepro.2024.143280 10.1109/ACCESS.2020.2968939 10.1109/TII.2019.2941747 10.1016/j.apenergy.2021.116897 10.3390/electronics10040487 10.1016/j.joule.2019.11.018 10.1109/ACCESS.2020.3005229 10.1038/s41560-018-0312-z 10.1016/j.est.2022.106193 10.1016/j.jpowsour.2008.01.028 10.1109/ACCESS.2025.3533137 10.3390/en12173271 10.1016/j.jechem.2022.03.011 10.1109/ACCESS.2019.2923095 10.3390/en16031469 10.1109/ACCESS.2021.3083395 10.1016/j.est.2022.105992 10.1109/TII.2017.2684821 10.1109/TVT.2020.3032989 10.1016/j.jpowsour.2020.229327 10.1016/j.apenergy.2023.120954 10.3390/en13092380 10.3390/en16020953 10.1016/j.apenergy.2023.120808 10.1002/ente.202300232 10.1016/j.ress.2023.109315 10.1021/acs.chemrev.9b00427 10.1016/j.est.2023.106787 10.1016/j.ijheatmasstransfer.2022.123685 10.1016/j.est.2020.102118 10.1109/TTE.2022.3173918 10.1007/s11760-023-02532-z 10.1149/2.044302jes 10.3390/s22239522 10.1021/acsenergylett.1c00743 10.1002/adma.202101474 10.1109/ACCESS.2019.2929177 10.1016/j.ijoes.2023.100122 10.1109/TPEL.2020.3033297 10.1016/j.jpowsour.2017.08.045 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2025.238192 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_jpowsour_2025_238192 S0378775325020282 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- ~HD 29L 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ AI. ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE T9H VH1 VOH WUQ |
| ID | FETCH-LOGICAL-c261t-efe1116f778875b5ea3b46a91592a1e4603d8eada0fd066bffc0532b1c2c8413 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001583657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7753 |
| IngestDate | Sat Nov 29 06:56:47 EST 2025 Sat Nov 29 17:03:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion battery Aging mechanism Physics-based models State prediction Data-driven methods |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-efe1116f778875b5ea3b46a91592a1e4603d8eada0fd066bffc0532b1c2c8413 |
| ORCID | 0000-0001-9586-2997 |
| ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2025_238192 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2025_238192 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-15 |
| PublicationDateYYYYMMDD | 2025-12-15 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wei, Wu (bib150) 2022; 230 Wang, Wang, Wu, Zhou, Liu, Zhou (bib133) 2021; 80 Liu, Li, Hu, Lucu, Widanage (bib257) 2020; 16 Gao, Xie, Yu, Ma, Liu, Chen (bib196) 2022; 10 Wang, Jiang, Li, Yan (bib11) 2016; 64 Cao, Zhang, Yu, Liu (bib182) 2019; 7 Wang, Huang, Mamo (bib234) 2020; 10 Kouhestani, Liu, Wang, Chandra (bib21) 2023; 70 Ren, Dong, Meng, Zhao, Wang, Deen (bib233) 2021; 17 Chen, Chen, Liu, Cheng, Li (bib222) 2021; 50 Ungurean, Micea, Carstoiu (bib239) 2020; 44 Lin, Ling, Cabrera, Yang, Yu, Tsui (bib90) 2021; 214 Kim, Lee (bib108) 2020; 12 Cong, Zhang, Jiang, Zhang, Jiang (bib210) 2020; 69 Liu, Li, Guo, Zhang, Shen, Ye, Peng, Qi, Wu, Li, Duan (bib15) 2025 Li, Liu, Cheng (bib80) 2023; 62 Jiang, Xu, Xu, Li, Ni, Wang, Liu, Cai, Lai (bib118) 2022; 442 Zinth, Lüders, Hofmann, Hattendorff, Buchberger, Erhard, Rebelo-Kornmeier, Jossen, Gilles (bib141) 2014; 271 Zhang, Wang, Xie, Yang, Hao, Fernandez (bib50) 2023; 29 Horstkötter, Bäker (bib112) 2023; 60 Xue, Shen, Li, Zhang, Chen, Liu (bib175) 2020; 69 Han, Wang, Wei (bib63) 2021; 302 Pan, Huang, He, Lin, Sun, Zhao, Wang (bib246) 2021; 9 Huang, Liu, Meng, Li, Jin, Teodorescu, Stroe (bib159) 2023; 11 Liu, Hu, Wei, Li, Jiang (bib264) 2019; 5 Duan, Zhang, Geng, Zhang (bib251) 2019; 44 Mao, Xu, Chen, Zhao, Wu, Yao (bib231) 2020; 19 Chen, Liu, He, Lyu, Cai, Zhang (bib36) 2025; 74 . Xu, Zhen, Cai, Wang, Gao, Jiang (bib40) 2021; 9 Dong, Yu, Zhang, Luo, Zou, Feng, Ma (bib67) 2023; 172 Liu (bib25) 2023 Li, Zhang, Xiong, Ding, Jie, Luo, Rong, Li (bib221) 2020; 459 Xu, Tang, Yu, Xie, Han, Ouyang (bib60) 2021; 214 Xie, Peng, Li, Hei, Hu (bib250) 2019; 18 Zhang, Bai, Yang, Li (bib238) 2023; 11 Al‐Gabalawy, Hosny, Hussien (bib197) 2020; 6 Feng, Song (bib153) 2021; 34 Lyu, Gao, Chen (bib201) 2021; 36 Zhang, Wang, Zhang, Wu, Jiang, Shi, Lyu, Cai (bib37) 2025; 112 Lybbert, Ghaemi, Balaji, Warren (bib198) 2021; 144 Deng, Gao, Chen, Kudreyko, Cattani, Zio, Song (bib209) 2023; 25 Liu, Gao, Marma, Miao, Liu (bib18) 2024; 17 Gou, Xu, Feng (bib211) 2020; 69 Zhang, Xu, Wang, Han, Hong, Hong (bib249) 2021; 16 Li, Chao, Li, Xiao, Li, Yang, Cui, Xu, Li, Yang, Yu, Wilkinson, Zhang (bib137) 2023; 6 Shen, Xu, Wu, Guan (bib206) 2019; 7 Li, Fang, Shi (bib55) 2021; 210 Li, Wang, Chen, Xu, Lu (bib124) 2020; 120 Rouhi Ardeshiri, Ma (bib237) 2021; 45 Xiao, Wang, Bo, Kim, Miara, Ceder (bib123) 2019; 5 Chen, Li, Cui, Yang, Wang, Wang (bib217) 2023; 10 Yang, Cui, Xia, Jiang, Ren, Sun, Feng, Wang, Yang (bib207) 2022; 15 Lin, Tian, Ding (bib203) 2023; 72 Tang, Zhang, Ning, Zhang (bib218) 2023; 170 Dong, Yang, Wei, Wei, Tsui (bib204) 2020; 16 Yang (bib152) 2021; 292 Ye, Chen, Shi, Peng, Shi (bib39) 2023; 18 Si, Wang, Hu, Zhou (bib32) 2011; 213 Tarar, Naqvi, Khalid, Pecht (bib216) 2023; 11 Chen, Shi, Ji, Mu, Wang (bib145) 2021; 234 Hong, Lee, Jeong, Yi (bib27) 2020; 278 von Kolzenberg, Stadler, Fath, Ecker, Horstmann, Latz (bib194) 2022; 539 Ding, Liu, Huiqin, Zequan, Ke, Shao, Abedinia (bib244) 2021; 148 Zhigang, Meng, Ruohai, Peng, Hui, Hongxi (bib58) 2023; 145 Wu, Guo, Tang, Sun, Qin (bib113) 2024; 13 Liu, Li (bib13) 2023; 45 Park, Choi, Choi, Ryu, Kim (bib232) 2020; 8 Wei, Chen (bib114) 2021; 229 Xing, Zhang, Zhang (bib166) 2023; 219 Wassiliadis, Kriegler, Gamra, Lienkamp (bib85) 2023; 561 Li, Landers, Park (bib101) 2020; 456 Go, Lee, Kim (bib229) 2021; 22 Liu (bib22) 2023; 170 Xue, Zhang, Cheng, Ma (bib57) 2020; 376 Deng, Xu, Liu, Hu, Duan, Xu (bib185) 2023; 339 Long, Gao, Li, Liu (bib46) 2020; 8 Dufo-López, Cortés-Arcos, Artal-Sevil, Bernal-Agustín (bib106) 2021; 11 Yang, Yu, Zhao, Wong, Wang (bib191) 2021; 70 Liu, Wang, Bai (bib155) 2022; 70 Fan, Fan, Liu, Qu, Li (bib51) 2019; 7 Xiang, Jin, Chen, Ge, Guo, Sun (bib126) 2007; 174 Mouais, Kittaneh, Majid (bib7) 2021; 41 Wang, Zhao (bib188) 2023; 133 Li, Wei, Xiong, Vilathgamuwa (bib17) 2022; 69 Xu, Yu, Tang, Sun, Si, Wu (bib132) 2019; 7 Guo, Wang, Zhao, Zhao, Ni (bib12) 2023; 202 Han, Lu, Zheng, Feng, Li, Li, Ouyang (bib96) 2019; 1 Wang, Fan, Jin, Takyi‐Aninakwa, Fernandez (bib226) 2023; 230 Wang, Ye, Li, Zhu (bib64) 2023; 15 Cheng, Sha, Wang, Tang, Ma, Chen, Wang, Lou, Lu, Cao (bib104) 2021; 11 López-Villanueva, Rodríguez-Iturriaga, Parrilla, Rodríguez-Bolívar (bib129) 2023; 16 Li, Liu, Foley, Zulke, Berecibar, Nanini-Maury, Mierlo, Hoster (bib29) 2019; 113 Sarkar, Shrotriya, Chandra, Hu (bib87) 2019; 25 Dong, Han, Wang (bib253) 2021; 68 Fei, Yang, Tsui, Li, Zhang (bib81) 2021; 225 Xiong, Xu, Li, Zhang, Ye, Li (bib255) 2023; 62 Goodenough, Kim (bib100) 2010; 22 Liu, Chandra (bib35) 2022 Zhang, Li, Li (bib235) 2020; 164 Shin, Kim, Lee (bib171) 2023; 40 Li, Li, He, Ji, Zeng, Li, Zhang, Zhang, Zhao (bib99) 2022; 15 Tian, Qin, Li, Zhao (bib135) 2020; 261 Jafari, Byun (bib248) 2022; 22 Xu, Wang, Zhao, Wang (bib73) 2019; 438 Che, Hu, Lin, Guo, Teodorescu (bib34) 2023; 16 Yang, Leng, Zhang, Ge, Wang (bib84) 2017; 360 Elmahallawy, Elfouly, Alouani, Massoud (bib30) 2022; 10 Yang, Wen, Shi, Zeng (bib43) 2021; 10 Zhu, Quan, Wan, Wang (bib151) 2021; 11 Wang, Ni, Li, Lu, Zhang, Feng, Wang (bib44) 2019; 7 Li, Saldivar, Bai, Li (bib61) 2019; 12 Sui, Swierczynski, Teodorescu, Stroe (bib105) 2021; 14 Zhang, Wang, Wu (bib269) 2023; 263 Yang, Wen, Liang, Shi, Tian, Wang (bib54) 2023; 15 Zhou, Zheng, Chen, Fu, Zhu, Song, Qu, Wang (bib263) 2021; 230 Yin, Tan, Tan (bib92) 2021; 21 Abdel-Monem, Trad, Omar, Hegazy, Hegazy, Bossche, Mierlo (bib158) 2017; 120 Lv, Zhou, Zhong, Yan, Srinivasan, Seh, Liu, Pan, Li, Wen, Yan (bib8) 2021; 34 Bai, Su, Rahman, Wang (bib242) 2022; 231 Hu, Che, Lin, Onori (bib258) 2020; 7 Qu, Liu, Ma, Fan (bib45) 2019; 7 Wang, Ni, Lu, Wang, Zhang (bib42) 2019; 68 Guha, Vaisakh, Patra (bib240) 2016 Pang, Yang, Wang, Fan, Wang, Li, Zhong, Zheng, Zou, Chen, Liu (bib214) 2023; 61 Jaguemont, Boulon, Venet, Dubé, Sari (bib163) 2016; 65 Deng, Shen, Wang, Wang (bib147) 2020; 33 Liu, Kouhestani, Chandra (bib38) 2021 Wei (bib154) 2023; 23 Zhao, Stalin, Zhao, Archer (bib116) 2020; 5 Chang, Hsieh, Chai, Lin (bib156) 2023; 16 Greenbank, Howey (bib262) 2021; 18 Li, Cai, Zheng, Shen, Dong, Liu (bib68) 2023; 11 T. Hu, H. Ma, K. Liu, H. Sun, Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention, IEEE Trans. Ind. Electron. 70 (1) 407-417. Hosen, Jaguemont, Van Mierlo, Berecibar (bib111) 2021; 24 Song, Hu, Tong, Yue (bib31) 2023; 57 Jiang, Zhang, Xia, Liu (bib190) 2020; 8 Guo, Sun, Vilsen, Meng, Stroe (bib33) 2022; 56 Pedersen, Lybbert, Warren (bib91) 2022; 180 Hong, Kang, Kim, Baek (bib75) 2023; 179 Liu, Zhu, Cui (bib2) 2019; 4 Pinson, Bazant (bib136) 2012; 160 Zhu, He, Bao, Sun, Gao (bib77) 2023; 16 Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (bib93) 2019; 4 Dechent, Epp, Jöst, Preger, Attia, Li, Sauer (bib4) 2021; 6 Liu, Wu, Xie, Sheng, Liu, Wang, Wu, He (bib3) 2023; 6 Wu, Maier, Yu (bib94) 2020; 49 Zheng, Li, Huang, Yang, Deng, Zhang, Tang (bib138) 2022; 10 Illa Font, Siqueira, Machado Neto, Santos, Stevan, Converti, Corrêa (bib9) 2023; 16 Couture, Lin (bib179) 2022; 9 Ji, Zhang, Pan, Hua, Chung, Shu, Zhang (bib168) 2020; 44 Xu, Yang, Fei, Huang, Tsui (bib170) 2021; 208 Tang, Li, Wang, Xiong, Li, Pan (bib24) 2024; 39 Wang, Yang, Xu, Wang, Yan, Xie (bib180) 2023; 336 Chang, Fang (bib78) 2019; 186 Shchurov, Dedov, Malozyomov, Shtang, Martyushev, Klyuev, Andriashin (bib122) 2021; 14 Ruan, Barreras, Engstrom, Merla, Millar, Wu (bib160) 2023; 563 Cheng, Wang, He (bib219) 2021; 232 Boerger, Gottschalk, Drescher, Boerger (bib178) 2022; 94 Li, Zhang, Wang, Dong (bib215) 2019; 21 Sun, Pan, Wu, Xia, Wang, Ren, Yang, Guo, Feng (bib167) 2023; 556 Wu, Huang, Tang, Yang, Liu, Li, Zhou, Huang, Xing, Shu, Jiang (bib121) 2021; 13 Wang, Kong, Zhao, Tsui (bib148) 2019; 147 Zhao, Zhu, Zhang, Liu, Wang, Liu, Hao (bib193) 2023; 15 Ghaeminezhad, Wang, Quan (bib165) 2022; 219 Zhou, Xie, Wu, Mei, Hao, Li, Chen (bib142) 2022; 34 Wang, Zhu, Zhang, Tian, Gao, Zhao, Bu, Qing (bib23) 2024; 470 Shen, Wu, Kang, Guan, Peng (bib107) 2021; 218 Thomas, Crasta, Kausthubha, Gowda, Rao (bib223) 2021; 40 Biggins, Homan, Roberts, Brown (bib6) 2021; 7 Guo, Wang, Yao, Fu, Ning (bib76) 2023; 9 Ng, Zhao, Yan, Conduit, Seh (bib192) 2020; 2 Sun, Qu, Zhang, Shi, Jia (bib56) 2022; 16 Mandli, Ramachandran, Khandelwal, Kim, Hariharan (bib59) 2018; 42 Bao, Qin, Yun (bib53) 2023; 9 Lee, Fujiki, Jung, Suzuki, Yashiro, Omoda, Ko, Shiratsuchi, Sugimoto, Ryu, Ku, Watanabe, Park, Aihara, Im, Han (bib144) 2020; 5 Jia, Ma, Guo, Li (bib183) 2021; 61 C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-type solid-state electrolytes: materials, interfaces, and batteries, Chem. Rev., 120 (10) 4257-4300. Li, Tian, Li (bib86) 2023; 67 Kong, Yang, Zhang, Pan, Peng, Wang (bib174) 2021; 223 Chen, Kang, E, Huang, Wei, Zhang, Zhu, Deng, Zhang, Liao (bib16) 2019; 442 Ma, Wu, Guan, Peng (bib82) 2020; 476 Zhang, Xiong, He, Pecht (bib265) 2019; 212 Hosen, Kalogiannis, Youssef, Karimi, Behi, Jin, Van Mierlo, Berecibar (bib110) 2021; 9 Duan, Tian, Lu, Wang, Shen, Xiong (bib189) 2021; 41 Long, Li, Gao, Liu (bib236) 2019; 12 Ma, Wang, Liu, Fang, Zhang, Ding, Yuan (bib243) 2022; 259 Rout, Das (bib14) 2025; 13 Singh, Chen, Tan, Huang (bib88) 2019; 9 Lyu, Zhang, Miao (bib225) 2023; 236 Xu, Liu, Hu, Ouyang, Chen (bib212) 2022; 69 Meng, Yang, Yang, Xie (bib254) 2023; 237 Wang, Feng (bib268) 2020; 37 Quan, Wu, Yang, Hu, Zhang, Hu, Liang, Li (bib139) 2023; 15 Lv, Li, Ren, Li, Ma, Duan (bib109) 2021; 9 Shao, Zhang, Zheng, He, Zheng, Liu (bib267) 2023; 16 Wu, Cheng, Huang, Fang, Zhang, Zhao, Zhang, Xing (bib47) 2023; 10 Zhou, Duan, Li, Kang, Shang, Zhang (bib26) 2025; 11 Jiang, Dai, Wei, Jiang (bib41) 2023; 11 Amini, Nazari, Hosseinian (bib131) 2022; 11 Zhang, Tang, Zhang, Wang, Stimming, Lee (bib169) 2020; 11 Liu, Wang, Liu, Liu, Tang, Li (bib157) 2021; 384 Chou, Wang, Lo (bib186) 2023; 9 Liu, Chen (bib260) 2019; 7 Garg, Tanim, Rahn, Bryngelsson, Legnedahl (bib162) 2018; 159 He, Li, Liu, Zhang, Lv, Yang, Li, Du, Zhang, Yang, Kim, Kang (bib98) 2012; 2 Xu, Oudalov, Ulbig, Andersson, Kirschen (bib103) 2018; 9 Ma, Xu, Wei, Wu, He, Zhang, Ma, Liu, Fan, Lin, Liu, Wang (bib14 Severson (10.1016/j.jpowsour.2025.238192_bib93) 2019; 4 Downey (10.1016/j.jpowsour.2025.238192_bib199) 2019; 182 Li (10.1016/j.jpowsour.2025.238192_bib137) 2023; 6 Xing (10.1016/j.jpowsour.2025.238192_bib166) 2023; 219 Che (10.1016/j.jpowsour.2025.238192_bib34) 2023; 16 Amini (10.1016/j.jpowsour.2025.238192_bib131) 2022; 11 Go (10.1016/j.jpowsour.2025.238192_bib229) 2021; 22 Mandli (10.1016/j.jpowsour.2025.238192_bib59) 2018; 42 10.1016/j.jpowsour.2025.238192_bib119 Ren (10.1016/j.jpowsour.2025.238192_bib134) 2020; 45 Couture (10.1016/j.jpowsour.2025.238192_bib179) 2022; 9 Yang (10.1016/j.jpowsour.2025.238192_bib54) 2023; 15 Hong (10.1016/j.jpowsour.2025.238192_bib75) 2023; 179 Zhao (10.1016/j.jpowsour.2025.238192_bib116) 2020; 5 Kouhestani (10.1016/j.jpowsour.2025.238192_bib21) 2023; 70 Bao (10.1016/j.jpowsour.2025.238192_bib53) 2023; 9 Chen (10.1016/j.jpowsour.2025.238192_bib16) 2019; 442 Liu (10.1016/j.jpowsour.2025.238192_bib2) 2019; 4 Zhao (10.1016/j.jpowsour.2025.238192_bib193) 2023; 15 Tang (10.1016/j.jpowsour.2025.238192_bib218) 2023; 170 Kumar Thakur (10.1016/j.jpowsour.2025.238192_bib164) 2023; 226 Shen (10.1016/j.jpowsour.2025.238192_bib107) 2021; 218 Banerjee (10.1016/j.jpowsour.2025.238192_bib117) 2020; 120 Li (10.1016/j.jpowsour.2025.238192_bib61) 2019; 12 10.1016/j.jpowsour.2025.238192_bib128 Bai (10.1016/j.jpowsour.2025.238192_bib242) 2022; 231 Illa Font (10.1016/j.jpowsour.2025.238192_bib9) 2023; 16 Wang (10.1016/j.jpowsour.2025.238192_bib42) 2019; 68 Lui (10.1016/j.jpowsour.2025.238192_bib74) 2021; 485 Meng (10.1016/j.jpowsour.2025.238192_bib254) 2023; 237 Wang (10.1016/j.jpowsour.2025.238192_bib234) 2020; 10 Pang (10.1016/j.jpowsour.2025.238192_bib214) 2023; 61 Liu (10.1016/j.jpowsour.2025.238192_bib161) 2019; 4 Wang (10.1016/j.jpowsour.2025.238192_bib252) 2020; 131 Zhang (10.1016/j.jpowsour.2025.238192_bib37) 2025; 112 Xiong (10.1016/j.jpowsour.2025.238192_bib255) 2023; 62 Chang (10.1016/j.jpowsour.2025.238192_bib78) 2019; 186 Hosen (10.1016/j.jpowsour.2025.238192_bib110) 2021; 9 Wang (10.1016/j.jpowsour.2025.238192_bib23) 2024; 470 Guo (10.1016/j.jpowsour.2025.238192_bib76) 2023; 9 Han (10.1016/j.jpowsour.2025.238192_bib63) 2021; 302 Sarkar (10.1016/j.jpowsour.2025.238192_bib87) 2019; 25 Xiang (10.1016/j.jpowsour.2025.238192_bib126) 2007; 174 Chen (10.1016/j.jpowsour.2025.238192_bib217) 2023; 10 Zhou (10.1016/j.jpowsour.2025.238192_bib142) 2022; 34 Li (10.1016/j.jpowsour.2025.238192_bib17) 2022; 69 Lv (10.1016/j.jpowsour.2025.238192_bib8) 2021; 34 Chen (10.1016/j.jpowsour.2025.238192_bib222) 2021; 50 Duan (10.1016/j.jpowsour.2025.238192_bib251) 2019; 44 Yang (10.1016/j.jpowsour.2025.238192_bib207) 2022; 15 Keil (10.1016/j.jpowsour.2025.238192_bib208) 2016; 6 Wang (10.1016/j.jpowsour.2025.238192_bib177) 2020; 10 Lyu (10.1016/j.jpowsour.2025.238192_bib225) 2023; 236 Xie (10.1016/j.jpowsour.2025.238192_bib10) 2020; 69 Wang (10.1016/j.jpowsour.2025.238192_bib148) 2019; 147 Peng (10.1016/j.jpowsour.2025.238192_bib48) 2020; 13 Boyle (10.1016/j.jpowsour.2025.238192_bib130) 2021; 6 Liu (10.1016/j.jpowsour.2025.238192_bib15) 2025 Ren (10.1016/j.jpowsour.2025.238192_bib5) 2019; 2 Cong (10.1016/j.jpowsour.2025.238192_bib210) 2020; 69 Liu (10.1016/j.jpowsour.2025.238192_bib3) 2023; 6 Dong (10.1016/j.jpowsour.2025.238192_bib67) 2023; 172 Han (10.1016/j.jpowsour.2025.238192_bib120) 2019; 4 Lu (10.1016/j.jpowsour.2025.238192_bib224) 2023; 68 Yang (10.1016/j.jpowsour.2025.238192_bib43) 2021; 10 Ma (10.1016/j.jpowsour.2025.238192_bib143) 2020; 345 Pinson (10.1016/j.jpowsour.2025.238192_bib136) 2012; 160 Kim (10.1016/j.jpowsour.2025.238192_bib256) 2021; 68 Liu (10.1016/j.jpowsour.2025.238192_bib257) 2020; 16 Xu (10.1016/j.jpowsour.2025.238192_bib89) 2019; 12 Sui (10.1016/j.jpowsour.2025.238192_bib105) 2021; 14 Jiang (10.1016/j.jpowsour.2025.238192_bib41) 2023; 11 Zhang (10.1016/j.jpowsour.2025.238192_bib265) 2019; 212 Zhang (10.1016/j.jpowsour.2025.238192_bib249) 2021; 16 Abdel-Monem (10.1016/j.jpowsour.2025.238192_bib158) 2017; 120 Liu (10.1016/j.jpowsour.2025.238192_bib38) 2021 Ji (10.1016/j.jpowsour.2025.238192_bib168) 2020; 44 Zhang (10.1016/j.jpowsour.2025.238192_bib115) 2007; 164 Wang (10.1016/j.jpowsour.2025.238192_bib44) 2019; 7 Liu (10.1016/j.jpowsour.2025.238192_bib18) 2024; 17 Jafari (10.1016/j.jpowsour.2025.238192_bib248) 2022; 22 Elmahallawy (10.1016/j.jpowsour.2025.238192_bib30) 2022; 10 Xu (10.1016/j.jpowsour.2025.238192_bib170) 2021; 208 Zhang (10.1016/j.jpowsour.2025.238192_bib195) 2008; 179 Zhang (10.1016/j.jpowsour.2025.238192_bib169) 2020; 11 Lybbert (10.1016/j.jpowsour.2025.238192_bib198) 2021; 144 Kim (10.1016/j.jpowsour.2025.238192_bib181) 2021; 10 Du (10.1016/j.jpowsour.2025.238192_bib241) 2023; 16 Zinth (10.1016/j.jpowsour.2025.238192_bib141) 2014; 271 Pedersen (10.1016/j.jpowsour.2025.238192_bib91) 2022; 180 Wu (10.1016/j.jpowsour.2025.238192_bib94) 2020; 49 Zhou (10.1016/j.jpowsour.2025.238192_bib26) 2025; 11 Huang (10.1016/j.jpowsour.2025.238192_bib159) 2023; 11 Ruan (10.1016/j.jpowsour.2025.238192_bib160) 2023; 563 Garg (10.1016/j.jpowsour.2025.238192_bib162) 2018; 159 Rouhi Ardeshiri (10.1016/j.jpowsour.2025.238192_bib237) 2021; 45 Liu (10.1016/j.jpowsour.2025.238192_bib65) 2023; 61 Duan (10.1016/j.jpowsour.2025.238192_bib189) 2021; 41 Ungurean (10.1016/j.jpowsour.2025.238192_bib239) 2020; 44 Stroe (10.1016/j.jpowsour.2025.238192_bib127) 2013; 50 Deng (10.1016/j.jpowsour.2025.238192_bib209) 2023; 25 Xu (10.1016/j.jpowsour.2025.238192_bib40) 2021; 9 Sun (10.1016/j.jpowsour.2025.238192_bib56) 2022; 16 Goodenough (10.1016/j.jpowsour.2025.238192_bib100) 2010; 22 Pang (10.1016/j.jpowsour.2025.238192_bib149) 2019; 12 Jiang (10.1016/j.jpowsour.2025.238192_bib118) 2022; 442 Jaguemont (10.1016/j.jpowsour.2025.238192_bib163) 2016; 65 Tang (10.1016/j.jpowsour.2025.238192_bib24) 2024; 39 Si (10.1016/j.jpowsour.2025.238192_bib32) 2011; 213 Liu (10.1016/j.jpowsour.2025.238192_bib155) 2022; 70 Lin (10.1016/j.jpowsour.2025.238192_bib90) 2021; 214 Zhu (10.1016/j.jpowsour.2025.238192_bib77) 2023; 16 Liu (10.1016/j.jpowsour.2025.238192_bib35) 2022 Boerger (10.1016/j.jpowsour.2025.238192_bib178) 2022; 94 Thomas (10.1016/j.jpowsour.2025.238192_bib223) 2021; 40 Liao (10.1016/j.jpowsour.2025.238192_bib52) 2025 Shao (10.1016/j.jpowsour.2025.238192_bib267) 2023; 16 Wang (10.1016/j.jpowsour.2025.238192_bib227) 2023; 38 Tarar (10.1016/j.jpowsour.2025.238192_bib216) 2023; 11 Ma (10.1016/j.jpowsour.2025.238192_bib243) 2022; 259 Ng (10.1016/j.jpowsour.2025.238192_bib192) 2020; 2 Li (10.1016/j.jpowsour.2025.238192_bib55) 2021; 210 Zhu (10.1016/j.jpowsour.2025.238192_bib176) 2021; 482 Liu (10.1016/j.jpowsour.2025.238192_bib13) 2023; 45 Li (10.1016/j.jpowsour.2025.238192_bib29) 2019; 113 Lyu (10.1016/j.jpowsour.2025.238192_bib201) 2021; 36 Wu (10.1016/j.jpowsour.2025.238192_bib121) 2021; 13 Ding (10.1016/j.jpowsour.2025.238192_bib244) 2021; 148 Liu (10.1016/j.jpowsour.2025.238192_bib260) 2019; 7 Deng (10.1016/j.jpowsour.2025.238192_bib185) 2023; 339 Hu (10.1016/j.jpowsour.2025.238192_bib220) 2023; 17 Jia (10.1016/j.jpowsour.2025.238192_bib183) 2021; 61 Hosen (10.1016/j.jpowsour.2025.238192_bib111) 2021; 24 Zhu (10.1016/j.jpowsour.2025.238192_bib151) 2021; 11 Mao (10.1016/j.jpowsour.2025.238192_bib231) 2020; 19 Hu (10.1016/j.jpowsour.2025.238192_bib258) 2020; 7 Wei (10.1016/j.jpowsour.2025.238192_bib271) 2021; 7 Gou (10.1016/j.jpowsour.2025.238192_bib211) 2020; 69 Yin (10.1016/j.jpowsour.2025.238192_bib72) 2020; 271 Quan (10.1016/j.jpowsour.2025.238192_bib139) 2023; 15 Zhai (10.1016/j.jpowsour.2025.238192_bib205) 2017; 13 Wang (10.1016/j.jpowsour.2025.238192_bib268) 2020; 37 Hong (10.1016/j.jpowsour.2025.238192_bib173) 2023; 64 Wassiliadis (10.1016/j.jpowsour.2025.238192_bib85) 2023; 561 Wang (10.1016/j.jpowsour.2025.238192_bib188) 2023; 133 Liu (10.1016/j.jpowsour.2025.238192_bib49) 2023 Xue (10.1016/j.jpowsour.2025.238192_bib57) 2020; 376 Qu (10.1016/j.jpowsour.2025.238192_bib45) 2019; 7 Park (10.1016/j.jpowsour.2025.238192_bib232) 2020; 8 Kim (10.1016/j.jpowsour.2025.238192_bib108) 2020; 12 Che (10.1016/j.jpowsour.2025.238192_bib259) 2021; 70 Xue (10.1016/j.jpowsour.2025.238192_bib175) 2020; 69 Yang (10.1016/j.jpowsour.2025.238192_bib152) 2021; 292 Pan (10.1016/j.jpowsour.2025.238192_bib246) 2021; 9 Shchurov (10.1016/j.jpowsour.2025.238192_bib122) 2021; 14 Lin (10.1016/j.jpowsour.2025.238192_bib95) 2017; 365 Wang (10.1016/j.jpowsour.2025.238192_bib180) 2023; 336 Shen (10.1016/j.jpowsour.2025.238192_bib206) 2019; 7 Wang (10.1016/j.jpowsour.2025.238192_bib11) 2016; 64 Wang (10.1016/j.jpowsour.2025.238192_bib226) 2023; 230 Song (10.1016/j.jpowsour.2025.238192_bib66) 2023; 16 Du (10.1016/j.jpowsour.2025.238192_bib202) 2019; 100 Yang (10.1016/j.jpowsour.2025.238192_bib191) 2021; 70 Chen (10.1016/j.jpowsour.2025.238192_bib36) 2025; 74 Zhou (10.1016/j.jpowsour.2025.238192_bib263) 2021; 230 Wu (10.1016/j.jpowsour.2025.238192_bib47) 2023; 10 Fan (10.1016/j.jpowsour.2025.238192_bib51) 2019; 7 Rout (10.1016/j.jpowsour.2025.238192_bib14) 2025; 13 Miao (10.1016/j.jpowsour.2025.238192_bib19) 2025; 18 Cheng (10.1016/j.jpowsour.2025.238192_bib219) 2021; 232 Chang (10.1016/j.jpowsour.2025.238192_bib156) 2023; 16 Pang (10.1016/j.jpowsour.2025.238192_bib79) 2018 Yin (10.1016/j.jpowsour.2025.238192_bib92) 2021; 21 Guha (10.1016/j.jpowsour.2025.238192_bib240) 2016 Li (10.1016/j.jpowsour.2025.238192_bib99) 2022; 15 Lipu (10.1016/j.jpowsour.2025.238192_bib20) 2021; 292 Zhang (10.1016/j.jpowsour.2025.238192_bib1) 2022; 34 Wei (10.1016/j.jpowsour.2025.238192_bib150) 2022; 230 Tian (10.1016/j.jpowsour.2025.238192_bib135) 2020; 261 Zhang (10.1016/j.jpowsour.2025.238192_bib238) 2023; 11 López-Villanueva (10.1016/j.jpowsour.2025.238192_bib129) 2023; 16 Zhang (10.1016/j.jpowsour.2025.238192_bib70) 2019; 1 Tu (10.1016/j.jpowsour.2025.238192_bib83) 2023; 329 Zhigang (10.1016/j.jpowsour.2025.238192_bib58) 2023; 145 Biggins (10.1016/j.jpowsour.2025.238192_bib6) 2021; 7 Li (10.1016/j.jpowsour.2025.238192_bib80) 2023; 62 Deng (10.1016/j.jpowsour.2025.238192_bib147) 2020; 33 Christensen (10.1016/j.jpowsour.2025.238192_bib184) 2005; 152 Horstkötter (10.1016/j.jpowsour.2025.238192_bib112) 2023; 60 Lin (10.1016/j.jpowsour.2025.2381 |
| References_xml | – volume: 11 year: 2021 ident: bib140 article-title: A growing appreciation for the role of LiF in the solid electrolyte interphase publication-title: Adv. Energy Mater. – volume: 10 year: 2023 ident: bib217 article-title: Remaining useful life prognostics of lithium-ion batteries based on a coordinate reconfiguration of degradation trajectory and multiple linear regression publication-title: Front. Energy Res. – start-page: 1004 year: 2018 end-page: 1009 ident: bib79 article-title: Research on modeling method of life prediction for satellite lithium battery based on SVR publication-title: 2018 Prognostics and System Health Management Conference (PHM-Chongqing) – volume: 50 start-page: 4006 year: 2013 end-page: 4017 ident: bib127 article-title: Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants publication-title: IEEE Trans. Ind. Appl. – year: 2025 ident: bib52 article-title: Zwitterionic poly(ionic liquid)-induced fast structural diffusion electrolytes for lithium metal batteries publication-title: Chin. Chem. Lett. – volume: 15 start-page: 5014 year: 2023 ident: bib193 article-title: Review of state estimation and remaining useful life prediction methods for lithium-ion batteries publication-title: Sustainability – volume: 13 start-page: 752 year: 2020 ident: bib48 article-title: A data-driven method with feature enhancement and adaptive optimization for lithium-ion battery remaining useful life prediction publication-title: Energies – volume: 10 start-page: 119040 year: 2022 end-page: 119070 ident: bib30 article-title: A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction publication-title: IEEE IEEE Veh. Technol. Soc. Section – volume: 4 start-page: 187 year: 2019 end-page: 196 ident: bib120 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy – volume: 41 start-page: 24 year: 2021 end-page: 31 ident: bib189 article-title: Deep neural network battery impedance spectra prediction by only using constant-current curve publication-title: Energy Storage Mater. – volume: 476 year: 2020 ident: bib82 article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach publication-title: J. Power Sources – volume: 9 start-page: 224 year: 2023 ident: bib53 article-title: A multi-stage adaptive method for remaining useful life prediction of lithium-ion batteries based on swarm intelligence optimization publication-title: Batteries – volume: 470 year: 2024 ident: bib23 article-title: Competition between discharge reaction and side reaction for anode's lithium during internal short circuit in lithium-ion batteries publication-title: J. Clean. Prod. – volume: 180 year: 2022 ident: bib91 article-title: Life cycle analysis of LiCoO publication-title: Resour. Conserv. Recycl. – volume: 285 year: 2023 ident: bib266 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm publication-title: Energy – volume: 37 start-page: 1232 year: 2020 end-page: 1243 ident: bib268 article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator publication-title: Energy – volume: 174 start-page: 335 year: 2007 end-page: 341 ident: bib126 article-title: Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries publication-title: J. Power Sources – volume: 40 start-page: 1850 year: 2023 end-page: 1862 ident: bib171 article-title: Feature construction for on-board early prediction of electric vehicle battery cycle life publication-title: Kor. J. Chem. Eng. – volume: 336 year: 2023 ident: bib180 article-title: Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network publication-title: Appl. Energy – volume: 159 start-page: 716 year: 2018 end-page: 723 ident: bib162 article-title: Elevated temperature for life extension of lithium ion power cells publication-title: Energy – volume: 9 start-page: 1299 year: 2023 end-page: 1306 ident: bib76 article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model publication-title: Energy Rep. – reference: C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-type solid-state electrolytes: materials, interfaces, and batteries, Chem. Rev., 120 (10) 4257-4300. – volume: 563 year: 2023 ident: bib160 article-title: Lithium-ion battery lifetime extension: a review of derating methods publication-title: J. Power Sources – volume: 15 start-page: 9176 year: 2023 ident: bib64 article-title: Remaining useful life prediction for lithium-ion batteries based on improved mode decomposition and time series publication-title: IEEE Access – volume: 329 year: 2023 ident: bib83 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl. Energy – volume: 13 start-page: 2619 year: 2024 ident: bib113 article-title: Remaining useful life prediction of lithium-ion batteries based on neural network and adaptive unscented kalman filter publication-title: Appl. Energy – volume: 230 year: 2023 ident: bib226 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. – volume: 11 year: 2023 ident: bib68 article-title: Prediction of lithium‐ion battery remaining useful life via empirical mode decomposition‐autoregressive integrated moving average and regularized particle filter algorithm publication-title: Energy Technol. – volume: 182 start-page: 1 year: 2019 end-page: 12 ident: bib199 article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds publication-title: Reliab. Eng. Syst. Saf. – volume: 1 year: 2019 ident: bib70 article-title: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries publication-title: eTransportation – volume: 234 year: 2021 ident: bib145 article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM publication-title: Energy – volume: 133 year: 2023 ident: bib188 article-title: A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy publication-title: Control Eng. Pract. – volume: 40 year: 2021 ident: bib223 article-title: Battery monitoring system using machine learning publication-title: J. Energy Storage – volume: 7 start-page: 382 year: 2020 end-page: 398 ident: bib258 article-title: Battery health prediction using fusion-based feature selection and machine learning publication-title: IEEE Trans. Transp. Electrification – volume: 278 year: 2020 ident: bib27 article-title: Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning publication-title: Appl. Energy – volume: 147 year: 2019 ident: bib148 article-title: Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena publication-title: Measurement – volume: 6 start-page: 125 year: 2016 end-page: 141 ident: bib208 article-title: Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells publication-title: J. Energy Storage – volume: 11 year: 2023 ident: bib238 article-title: State‐of‐Charge prediction of lithium‐ion batteries based on sparse autoencoder and gated recurrent unit neural network publication-title: Energy Technol. – volume: 219 year: 2022 ident: bib165 article-title: A review on lithium-ion battery thermal management system techniques: a control-oriented analysis publication-title: Appl. Therm. Eng. – volume: 169 year: 2022 ident: bib187 article-title: Review—“Knees”in lithium-ion battery aging trajectories publication-title: J. Electrochem. Soc. – volume: 131 year: 2020 ident: bib252 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 2797 year: 2019 end-page: 2813 ident: bib44 article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries publication-title: Energy Sci. Eng. – volume: 7 start-page: 34 year: 2021 end-page: 41 ident: bib6 article-title: Exploring the economics of large scale lithium ion and lead acid batteries performing frequency response publication-title: Energy Rep. – volume: 34 year: 2021 ident: bib8 article-title: Machine learning: an advanced platform for materials development and state prediction in lithium‐ion batteries publication-title: Adv. Mater. – volume: 160 year: 2012 ident: bib136 article-title: Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction publication-title: J. Electrochem. Soc. – volume: 1 year: 2019 ident: bib96 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation – volume: 4 start-page: 683 year: 2019 end-page: 689 ident: bib125 article-title: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte publication-title: Nat. Energy – volume: 16 start-page: 338 year: 2023 end-page: 371 ident: bib34 article-title: Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects publication-title: Energy Environ. Sci. – volume: 229 year: 2021 ident: bib114 article-title: A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries publication-title: Energy – start-page: 385 year: 2023 ident: bib25 article-title: Data-driven prognosis of lithium-ion batteries thermal runaway: a novel machine learning approach publication-title: ECS Meeting Abstracts – volume: 74 start-page: 1 year: 2025 end-page: 14 ident: bib36 article-title: SOC estimation of lithium-ion battery pack based on discharge stage division and fusion modeling publication-title: IEEE Trans. Instrum. Meas. – volume: 225 year: 2021 ident: bib81 article-title: Early prediction of battery lifetime via a machine learning based framework publication-title: Energy – volume: 25 start-page: 646 year: 2023 ident: bib209 article-title: Multi-fractal weibull adaptive model for the remaining useful life prediction of electric vehicle lithium batteries publication-title: Entropy – volume: 25 year: 2019 ident: bib87 article-title: Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery publication-title: J. Energy Storage – volume: 21 start-page: 1087 year: 2021 ident: bib92 article-title: Life prediction of battery using a neural gaussian process with early discharge characteristics publication-title: Sensors – volume: 22 start-page: 587 year: 2010 end-page: 603 ident: bib100 article-title: Challenges for rechargeable li batteries publication-title: Chem. Mater. – volume: 68 year: 2023 ident: bib224 article-title: A novel method of prediction for capacity and remaining useful life of lithium-ion battery based on multi-time scale Weibull accelerated failure time regression publication-title: J. Energy Storage – volume: 218 year: 2021 ident: bib107 article-title: A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current publication-title: Energy – volume: 144 year: 2021 ident: bib198 article-title: Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 9165 year: 2022 ident: bib99 article-title: Electrochemical failure results inevitable capacity degradation in Li-Ion Batteries-A review publication-title: Energies – volume: 70 start-page: 531 year: 2022 end-page: 541 ident: bib155 article-title: Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery publication-title: J. Energy Chem. – volume: 11 start-page: 6335 year: 2025 end-page: 6343 ident: bib26 article-title: Life-cycle state-of-charge estimation for lithium-ion battery considering coulomb efficiency and capacity decay publication-title: IEEE Trans. Transp. Electrification – volume: 11 start-page: 57 year: 2023 end-page: 66 ident: bib159 article-title: Lifetime extension of lithium-ion batteries with low-frequency pulsed current charging publication-title: IEEE J. Emerg. Selected Topics Power Electron. – volume: 148 year: 2021 ident: bib244 article-title: Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 4772 year: 2023 end-page: 4780 ident: bib139 article-title: Improving performances of the electrode/electrolyte interface via the regulation of solvation complexes: a review and prospect publication-title: Nanoscale – volume: 5 start-page: 1225 year: 2019 end-page: 1236 ident: bib264 article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries publication-title: IEEE Trans. Transp. Electrification – volume: 16 start-page: 767 year: 2023 ident: bib66 article-title: Lithium-Ion battery life prediction method under thermal gradient conditions publication-title: Energies – volume: 69 start-page: 12775 year: 2020 end-page: 12785 ident: bib210 article-title: A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation publication-title: IEEE Trans. Veh. Technol. – volume: 112 year: 2025 ident: bib37 article-title: Fault diagnosis of energy storage batteries based on dual driving of data and models publication-title: J. Energy Storage – volume: 208 year: 2021 ident: bib170 article-title: Life prediction of lithium-ion batteries based on stacked denoising autoencoders publication-title: Reliab. Eng. Syst. Saf. – volume: 19 start-page: 6471 year: 2023 end-page: 6481 ident: bib245 article-title: Semi-supervised self-learning-based lifetime prediction for batteries publication-title: IEEE Trans. Ind. Inf. – volume: 10 year: 2022 ident: bib196 article-title: Study on lithium-ion battery degradation caused by side reactions in fast-charging process publication-title: Front. Energy Res. – volume: 213 start-page: 1 year: 2011 end-page: 14 ident: bib32 article-title: Remaining useful life estimation-A review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. – volume: 69 start-page: 14765 year: 2020 end-page: 14779 ident: bib175 article-title: Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation publication-title: IEEE Trans. Veh. Technol. – volume: 70 start-page: 1269 year: 2021 end-page: 1277 ident: bib259 article-title: Predictive battery health management with transfer learning and online model correction publication-title: IEEE Trans. Veh. Technol. – volume: 18 start-page: 1888 year: 2025 ident: bib19 article-title: Analysis of state-of-charge estimation methods for Li-Ion batteries considering wide temperature range publication-title: Energies – volume: 210 year: 2021 ident: bib55 article-title: Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression publication-title: Reliab. Eng. Syst. Saf. – volume: 232 year: 2021 ident: bib219 article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network publication-title: Energy – volume: 561 year: 2023 ident: bib85 article-title: Model-based health-aware fast charging to mitigate the risk of lithium plating and prolong the cycle life of lithium-ion batteries in electric vehicles publication-title: J. Power Sources – volume: 120 start-page: 6783 year: 2020 end-page: 6819 ident: bib124 article-title: New concepts in electrolytes publication-title: Chem. Rev. – start-page: 555 year: 2016 end-page: 560 ident: bib240 article-title: Remaining useful life estimation of lithium-ion batteries based on a new capacity degradation model publication-title: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) – volume: 365 start-page: 235 year: 2017 end-page: 239 ident: bib95 article-title: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy publication-title: J. Power Sources – volume: 7 start-page: 2862 year: 2021 end-page: 2871 ident: bib271 article-title: Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit publication-title: Energy Rep. – volume: 11 start-page: 1359 year: 2022 end-page: 1371 ident: bib131 article-title: Optimal scheduling and cost-benefit analysis of lithium-ion batteries based on battery state of health publication-title: IEEE Access – volume: 164 year: 2020 ident: bib235 article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation publication-title: Measurement – volume: 17 start-page: 1643 year: 2024 ident: bib18 article-title: Advances in the study of techniques to determine the lithium-ion battery's state of charge publication-title: Energies – volume: 69 start-page: 10854 year: 2020 end-page: 10867 ident: bib211 article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: J. Power Sources – volume: 152 year: 2005 ident: bib184 article-title: Cyclable lithium and capacity loss in Li-Ion cells publication-title: J. Electrochem. Soc. – volume: 7 start-page: 130638 year: 2019 end-page: 130649 ident: bib206 article-title: Research on degradation modeling and life prediction method of lithium-ion battery in dynamic environment publication-title: IEEE Access – volume: 61 year: 2023 ident: bib214 article-title: A novel hybrid model for lithium-ion batteries lifespan prediction with high accuracy and interpretability publication-title: J. Energy Storage – volume: 39 start-page: 2230 year: 2024 end-page: 2243 ident: bib24 article-title: Data-driven state of health estimation method of lithium-ion batteries for partial charging curves publication-title: IEEE Trans. Energy Convers. – volume: 16 start-page: 3096 year: 2023 ident: bib156 article-title: Remaining-useful-life prediction for Li-Ion batteries publication-title: Energies – volume: 10 start-page: 3549 year: 2020 ident: bib234 article-title: Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries publication-title: Appl. Sci. – volume: 230 year: 2021 ident: bib263 article-title: Research on state of health prediction model for lithium batteries based on actual diverse data publication-title: Energy – volume: 186 start-page: 51 year: 2019 end-page: 63 ident: bib78 article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine publication-title: Reliab. Eng. Syst. Saf. – volume: 438 year: 2019 ident: bib73 article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model publication-title: J. Power Sources – volume: 271 year: 2020 ident: bib72 article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control publication-title: Appl. Energy – volume: 12 start-page: 2247 year: 2019 ident: bib149 article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon publication-title: Energies – volume: 18 year: 2019 ident: bib250 article-title: Remaining useful life prediction of lithium‐ion battery based on an improved particle filter algorithm publication-title: Int. J. Electrochem. Sci. – volume: 113 year: 2019 ident: bib29 article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review publication-title: Renew. Sustain. Energy Rev. – volume: 94 start-page: 603 year: 2022 end-page: 606 ident: bib178 article-title: Shaking lithium‐ion cells on a Rocker-Temperature‐Dependent influence of mechanical movement on lithium‐ion battery lifetime publication-title: Chem. Ing. Tech. – volume: 482 year: 2021 ident: bib176 article-title: Data-driven analysis on thermal effects and temperature changes of lithium-ion battery publication-title: J. Power Sources – volume: 61 year: 2023 ident: bib65 article-title: A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm publication-title: J. Energy Storage – volume: 18 start-page: 2965 year: 2021 end-page: 2973 ident: bib262 article-title: Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life publication-title: IEEE Trans. Ind. Inf. – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: bib205 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans. Ind. Inf. – volume: 11 start-page: 143 year: 2021 end-page: 153 ident: bib151 article-title: Remaining useful life prediction of lithium-ion batteries: a hybrid approach of grey–markov chain model and improved gaussian process publication-title: IEEE J. Emerg. Selected Topics Power Electron. – volume: 6 start-page: 2351 year: 2021 end-page: 2355 ident: bib4 article-title: ENPOLITE: comparing lithium-ion cells across energy, power, lifetime, and temperature publication-title: ACS Energy Lett. – volume: 11 start-page: 175 year: 2023 end-page: 186 ident: bib41 article-title: Multi-kernel relevance vector machine with parameter optimization for cycling aging prediction of lithium-ion batteries publication-title: IEEE J. Emerg. Selected Topics Power Electron. – volume: 2 year: 2019 ident: bib5 article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries publication-title: eTransportation – volume: 49 start-page: 1569 year: 2020 end-page: 1614 ident: bib94 article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries publication-title: Chem. Soc. Rev. – year: 2025 ident: bib15 article-title: 2D TMD-based lateral heterostructures: preparation, property, and application publication-title: Adv. Funct. Mater. – volume: 16 start-page: 803 year: 2023 ident: bib77 article-title: Prognosis of lithium-ion batteries' remaining useful life based on a sequence-to-sequence model with variational mode decomposition publication-title: Energies – volume: 539 year: 2022 ident: bib194 article-title: A four parameter model for the solid-electrolyte interphase to predict battery aging during operation publication-title: J. Power Sources – volume: 16 start-page: 953 year: 2023 ident: bib9 article-title: Second life of lithium-ion batteries of electric vehicles: a short review and perspectives publication-title: Energies – volume: 16 start-page: 2484 year: 2023 ident: bib129 article-title: Application of variable-order fractional calculus to the modeling of calendar aging in lithium-ion batteries publication-title: Energies – volume: 44 start-page: 1724 year: 2019 end-page: 1734 ident: bib251 article-title: Remaining useful life prediction of lithium‐ion battery based on extended kalman particle filter publication-title: Int. J. Energy Res. – volume: 7 start-page: 39474 year: 2019 end-page: 39484 ident: bib260 article-title: Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model publication-title: IEEE Access – volume: 11 start-page: 4671 year: 2021 ident: bib104 article-title: Solid-state lithium battery cycle life prediction using machine learning publication-title: Appl. Sci. – volume: 384 year: 2021 ident: bib157 article-title: Battery degradation model and multiple-indicators based lifetime estimator for energy storage system design and operation: experimental analyses of cycling-induced aging publication-title: Electrochim. Acta – volume: 69 start-page: 6984 year: 2022 end-page: 6996 ident: bib17 article-title: Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 4 start-page: 310 year: 2020 end-page: 346 ident: bib28 article-title: Battery lifetime prognostics publication-title: Joule – volume: 41 year: 2021 ident: bib7 article-title: Choosing the best lifetime model for commercial lithium-ion batteries publication-title: J. Energy Storage – volume: 67 year: 2023 ident: bib86 article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect publication-title: J. Energy Storage – volume: 237 year: 2023 ident: bib254 article-title: A power model considering initial battery state for remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. – volume: 8 start-page: 142557 year: 2020 end-page: 142570 ident: bib46 article-title: Multi-parameter optimization method for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Access – volume: 214 year: 2021 ident: bib90 article-title: Prognostics for lithium-ion batteries using a two-phase gamma degradation process model publication-title: Reliab. Eng. Syst. Saf. – volume: 9 start-page: 3012 year: 2019 ident: bib88 article-title: Semi-empirical capacity fading model for SoH estimation of Li-Ion batteries publication-title: Appl. Sci. – volume: 16 start-page: 1469 year: 2023 ident: bib267 article-title: A review of remaining useful life prediction for energy storage components based on stochastic filtering methods publication-title: Energies – volume: 14 start-page: 8072 year: 2021 ident: bib122 article-title: Degradation of lithium-ion batteries in an electric transport complex publication-title: Energies – volume: 120 start-page: 179 year: 2017 end-page: 191 ident: bib158 article-title: Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries publication-title: Energy – volume: 10 start-page: 1497 year: 2021 ident: bib43 article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature publication-title: IEEE Trans. Veh. Technol. – volume: 9 start-page: 1115 year: 2021 end-page: 1133 ident: bib246 article-title: Prediction of remaining useful life for lithium‐ion battery based on particle filter with residual resampling publication-title: Energy Sci. Eng. – volume: 70 year: 2023 ident: bib21 article-title: Data-driven prognosis of failure detection and prediction of lithium-ion batteries publication-title: J. Energy Storage – volume: 34 year: 2021 ident: bib153 article-title: A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction publication-title: J. Energy Storage – volume: 7 start-page: 87178 year: 2019 end-page: 87191 ident: bib45 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access – volume: 212 start-page: 240 year: 2019 end-page: 249 ident: bib265 article-title: Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries publication-title: J. Clean. Prod. – volume: 11 year: 2023 ident: bib216 article-title: Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features publication-title: Front. Energy Res. – volume: 302 year: 2021 ident: bib63 article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion publication-title: Appl. Energy – volume: 13 start-page: 375 year: 2020 ident: bib172 article-title: SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators publication-title: Energies – volume: 57 year: 2023 ident: bib31 article-title: Remaining life prediction of lithium-ion batteries based on health management: a review publication-title: J. Energy Storage – volume: 62 year: 2023 ident: bib80 article-title: The co-estimation of states for lithium-ion batteries based on segment data publication-title: J. Energy Storage – volume: 50 year: 2021 ident: bib222 article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery publication-title: Adv. Eng. Inform. – volume: 12 start-page: 1685 year: 2019 ident: bib89 article-title: Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect publication-title: Energies – volume: 22 start-page: 697 year: 2021 end-page: 703 ident: bib229 article-title: LSTM model-based SOH prediction for lithium-ion battery publication-title: J. Digital Contents Soc. – volume: 243 year: 2021 ident: bib69 article-title: A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery publication-title: Energy – volume: 339 year: 2023 ident: bib185 article-title: Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles publication-title: Appl. Energy – volume: 5 start-page: 105 year: 2019 end-page: 126 ident: bib123 article-title: Understanding interface stability in solid-state batteries publication-title: Nat. Rev. Mater. – volume: 6 year: 2023 ident: bib3 article-title: Prelithiation enhances cycling life of lithium‐ion batteries: a mini review publication-title: Energy Environ. Mater. – volume: 442 year: 2022 ident: bib118 article-title: Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes publication-title: Chem. Eng. J. – volume: 527 year: 2022 ident: bib270 article-title: Feature engineering for machine learning enabled early prediction of battery lifetime publication-title: J. Power Sources – volume: 17 start-page: 3109 year: 2023 end-page: 3117 ident: bib220 article-title: Image, RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model publication-title: Signal, Image and Video Processing – volume: 263 year: 2023 ident: bib269 article-title: Life prediction model for lithium-ion battery considering fast-charging protocol publication-title: Energy – volume: 9 start-page: 2191 year: 2021 end-page: 2201 ident: bib110 article-title: Twin‐model framework development for a comprehensive battery lifetime prediction validated with a realistic driving profile publication-title: Energy Sci. Eng. – reference: T. Hu, H. Ma, K. Liu, H. Sun, Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention, IEEE Trans. Ind. Electron. 70 (1) 407-417. – volume: 100 year: 2019 ident: bib202 article-title: Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method publication-title: Microelectron. Reliab. – volume: 202 year: 2023 ident: bib12 article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids publication-title: Int. J. Heat Mass Tran. – volume: 376 start-page: 95 year: 2020 end-page: 102 ident: bib57 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression publication-title: Neurocomputing – volume: 166 start-page: 796 year: 2019 end-page: 806 ident: bib62 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system publication-title: Energy – volume: 45 start-page: 7732 year: 2020 end-page: 7740 ident: bib134 article-title: A practical approach to predict volume deformation of lithium‐ion batteries from crystal structure changes of electrode materials publication-title: Int. J. Energy Res. – volume: 9 start-page: 85431 year: 2021 end-page: 85441 ident: bib40 article-title: State of health diagnosis and remaining useful life prediction of lithium-ion batteries based on multi-feature data and mechanism fusion publication-title: IEEE Access – volume: 16 start-page: 313 year: 2022 ident: bib56 article-title: Remaining useful life prediction for lithium-ion batteries based on improved variational mode decomposition and machine learning algorithm publication-title: IEEE Access – volume: 259 year: 2022 ident: bib243 article-title: A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries publication-title: Knowl. Base Syst. – volume: 16 start-page: 3767 year: 2020 end-page: 3777 ident: bib257 article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Inf. – volume: 214 year: 2021 ident: bib60 article-title: Remaining useful life prediction of lithium-ion batteries based on wiener process under time-varying temperature condition publication-title: Reliab. Eng. Syst. Saf. – volume: 80 year: 2021 ident: bib133 article-title: Advanced electrolyte design for stable lithium metal anode: from liquid to solid publication-title: Nano Energy – volume: 10 start-page: 487 year: 2021 ident: bib181 article-title: Novel practical life cycle prediction method by entropy estimation of Li-Ion battery publication-title: Electronics – volume: 2 start-page: 161 year: 2020 end-page: 170 ident: bib192 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat. Mach. Intell. – volume: 23 start-page: 2587 year: 2023 ident: bib154 article-title: Prediction of state of health of lithium-ion battery using health index informed attention model publication-title: Sensors – volume: 18 year: 2023 ident: bib39 article-title: Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter publication-title: Int. J. Electrochem. Sci. – volume: 68 start-page: 9543 year: 2019 end-page: 9553 ident: bib42 article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony publication-title: IEEE Trans. Veh. Technol. – volume: 24 year: 2021 ident: bib111 article-title: Battery lifetime prediction and performance assessment of different modeling approaches publication-title: iScience – volume: 236 year: 2023 ident: bib225 article-title: Parallel state fusion LSTM-based early-cycle stage lithium-ion battery RUL prediction under Lebesgue sampling framework publication-title: Reliab. Eng. Syst. Saf. – volume: 34 year: 2022 ident: bib142 article-title: Encapsulation of metallic Zn in a hybrid MXene/Graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries publication-title: Adv. Mater. – volume: 8 start-page: 123858 year: 2020 end-page: 123868 ident: bib190 article-title: State of health estimation for lithium-ion battery using empirical degradation and error compensation models publication-title: IEEE Access – volume: 12 start-page: 8544 year: 2020 ident: bib108 article-title: Scale-Up of physics-based models for predicting degradation of large lithium ion batteries publication-title: Sustainability – volume: 68 start-page: 10949 year: 2021 end-page: 10958 ident: bib253 article-title: Dynamic bayesian network-based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE Trans. Ind. Electron. – volume: 360 start-page: 28 year: 2017 end-page: 40 ident: bib84 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J. Power Sources – volume: 2 start-page: 913 year: 2012 ident: bib98 article-title: Gassing in Li publication-title: Sci. Rep. – volume: 6 start-page: 487 year: 2021 end-page: 494 ident: bib130 article-title: Corrosion of lithium metal anodes during calendar ageing and its microscopic origins publication-title: Nat. Energy – volume: 72 start-page: 5934 year: 2023 end-page: 5947 ident: bib203 article-title: Ensemble remaining useful life prediction for lithium-ion batteries with the fusion of historical and real-time degradation data publication-title: IEEE Trans. Veh. Technol. – volume: 14 start-page: 1732 year: 2021 ident: bib105 article-title: The degradation behavior of LiFePO publication-title: Energies – volume: 5 start-page: 299 year: 2020 end-page: 308 ident: bib144 article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes publication-title: Nat. Energy – volume: 15 start-page: 1602 year: 2023 ident: bib54 article-title: Remaining useful life prediction for lithium-ion batteries based on the partial voltage and temperature publication-title: IEEE Access – volume: 234 year: 2021 ident: bib146 article-title: Remaining useful life prediction of lithium battery based on capacity regeneration point detection publication-title: Energy – volume: 4 start-page: 540 year: 2019 end-page: 550 ident: bib2 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy – volume: 170 year: 2023 ident: bib22 article-title: Data-driven prognosis of multiscale and multiphysics complex system anomalies: its application to lithium-ion batteries failure detection publication-title: J. Electrochem. Soc. – volume: 292 year: 2021 ident: bib20 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress publication-title: J. Clean. Prod. – volume: 36 start-page: 6228 year: 2021 end-page: 6240 ident: bib201 article-title: Li-Ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method publication-title: IEEE Trans. Power Electron. – volume: 164 start-page: 351 year: 2007 end-page: 364 ident: bib115 article-title: A review on the separators of liquid electrolyte Li-ion batteries publication-title: J. Power Sources – start-page: 2779 year: 2023 ident: bib49 article-title: (Digital presentation) data-driven prognosis of lithium-ion batteries thermal runaway early warning and detection publication-title: Electrochem. Soc. – volume: 9 start-page: 3995 year: 2021 end-page: 4006 ident: bib109 article-title: Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method publication-title: J. Mater. Chem. A – volume: 62 year: 2023 ident: bib255 article-title: Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves publication-title: J. Energy Storage – start-page: 1864 year: 2021 ident: bib38 article-title: Data-driven prognosis of the failure of lithium-ion batteries publication-title: ECS Meeting Abstracts – volume: 16 start-page: 1420 year: 2023 ident: bib241 article-title: Research on state-of-health estimation for lithium-ion batteries based on the charging phase publication-title: Energies – volume: 45 start-page: 14692 year: 2021 end-page: 14709 ident: bib200 article-title: A novel dual time scale life prediction method for lithium‐ion batteries considering effects of temperature and state of charge publication-title: Int. J. Energy Res. – volume: 442 year: 2019 ident: bib16 article-title: Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review publication-title: J. Power Sources – volume: 456 year: 2020 ident: bib101 article-title: A comprehensive single-particle-degradation model for battery state-of-health prediction publication-title: J. Power Sources – volume: 33 start-page: 2035 year: 2020 end-page: 2046 ident: bib147 article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery publication-title: Neural Comput. Appl. – volume: 4 start-page: 540 year: 2019 end-page: 550 ident: bib161 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy – volume: 172 start-page: 894 year: 2023 end-page: 907 ident: bib67 article-title: Data-driven predictive prognostic model for power batteries based on machine learning publication-title: Process Saf. Environ. Prot. – volume: 69 start-page: 14657 year: 2020 end-page: 14673 ident: bib10 article-title: An MPC-based control strategy for electric vehicle battery cooling considering energy saving and battery lifespan publication-title: IEEE Trans. Veh. Technol. – volume: 292 year: 2021 ident: bib152 article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications publication-title: Appl. Energy – volume: 17 start-page: 3478 year: 2021 end-page: 3487 ident: bib233 article-title: A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life publication-title: IEEE Trans. Ind. Inf. – volume: 22 start-page: 9552 year: 2022 ident: bib248 article-title: XGBoost-Based remaining useful life estimation model with extended kalman particle filter for lithium-ion batteries publication-title: Sensors – volume: 42 start-page: 1973 year: 2018 end-page: 1982 ident: bib59 article-title: Fast computational framework for optimal life management of lithium ion batteries publication-title: Int. J. Energy Res. – volume: 485 year: 2021 ident: bib74 article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction publication-title: J. Power Sources – volume: 6 start-page: 7 year: 2023 ident: bib137 article-title: A review of Solid Electrolyte Interphase (SEI) and dendrite formation in lithium batteries publication-title: Electrochem. Energy Rev. – volume: 9 start-page: 1131 year: 2018 end-page: 1140 ident: bib103 article-title: Modeling of lithium-ion battery degradation for cell life assessment publication-title: IEEE Trans. Smart Grid – volume: 56 year: 2022 ident: bib33 article-title: Review of “grey box” lifetime modeling for lithium-ion battery: combining physics and data-driven methods publication-title: J. Energy Storage – volume: 68 start-page: 3485 year: 2021 end-page: 3493 ident: bib256 article-title: A novel prognostics approach using shifting kernel particle filter of Li-Ion batteries under State changes publication-title: IEEE Trans. Ind. Electron. – volume: 261 year: 2020 ident: bib135 article-title: A review of the state of health for lithium-ion batteries: research status and suggestions publication-title: J. Clean. Prod. – volume: 481 year: 2021 ident: bib97 article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health publication-title: J. Power Sources – volume: 67 start-page: 92 year: 2018 end-page: 103 ident: bib247 article-title: The Co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles publication-title: IEEE Trans. Veh. Technol. – volume: 19 start-page: 2380 year: 2020 ident: bib231 article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD publication-title: Energies – volume: 44 start-page: 6502 year: 2020 end-page: 6510 ident: bib168 article-title: State of health prediction model based on internal resistance publication-title: Int. J. Energy Res. – volume: 8 start-page: 20786 year: 2020 end-page: 20798 ident: bib232 article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles publication-title: IEEE Access – volume: 10 year: 2022 ident: bib138 article-title: Investigation on the performance and recession mechanisms of high nickel ternary lithium‐ion batteries under artificial aging discharge rates publication-title: Energy Technol. – volume: 6 start-page: 37 year: 2020 ident: bib197 article-title: Lithium-ion battery modeling including degradation based on single-particle approximations publication-title: Batteries – volume: 179 year: 2023 ident: bib75 article-title: Sequential application of denoising autoencoder and long-short recurrent convolutional network for noise-robust remaining-useful-life prediction framework of lithium-ion batteries publication-title: Comput. Ind. Eng. – volume: 476 year: 2020 ident: bib213 article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model publication-title: J. Power Sources – volume: 179 start-page: 793 year: 2008 end-page: 798 ident: bib195 article-title: Capacity fade analysis of a lithium ion cell publication-title: J. Power Sources – volume: 145 year: 2023 ident: bib58 article-title: Remaining useful life prediction of lithium-ion batteries based on KS agglomeration function integrating multi-expert knowledge publication-title: Microelectron. Reliab. – volume: 34 year: 2022 ident: bib1 article-title: Interfacial design for a 4.6 V high‐voltage single‐crystalline LiCoO publication-title: Adv. Mater. – volume: 64 year: 2023 ident: bib173 article-title: State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm publication-title: J. Energy Storage – volume: 7 start-page: 141549 year: 2019 end-page: 141561 ident: bib182 article-title: A method for interval prediction of satellite battery state of health based on sample entropy publication-title: IEEE Access – volume: 10 year: 2023 ident: bib47 article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm publication-title: Front. Energy Res. – volume: 231 year: 2022 ident: bib242 article-title: Prognostics of lithium-ion batteries using knowledge-constrained machine learning and Kalman filtering publication-title: Reliab. Eng. Syst. Saf. – volume: 70 start-page: 6613 year: 2021 end-page: 6625 ident: bib191 article-title: Online equivalent degradation indicator calculation for remaining charging-discharging cycle determination of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 171 start-page: 1173 year: 2019 end-page: 1182 ident: bib102 article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries publication-title: Energy – volume: 65 start-page: 4328 year: 2016 end-page: 4343 ident: bib163 article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation publication-title: IEEE Trans. Veh. Technol. – volume: 7 start-page: 150383 year: 2019 end-page: 150394 ident: bib261 article-title: State-of-Health prediction for lithium-ion batteries with multiple gaussian process regression model publication-title: IEEE Access – volume: 120 start-page: 6878 year: 2020 end-page: 6933 ident: bib117 article-title: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes publication-title: Chem. Rev. – volume: 170 year: 2023 ident: bib218 article-title: Prediction of battery SOH and RUL based on cooperative characteristics in voltage-temperature-time dimensions publication-title: J. Electrochem. Soc. – volume: 64 year: 2023 ident: bib228 article-title: State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method publication-title: J. Energy Storage – volume: 21 start-page: 510 year: 2019 end-page: 518 ident: bib215 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Energy Storage – volume: 556 year: 2023 ident: bib167 article-title: Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries publication-title: J. Power Sources – volume: 9 year: 2022 ident: bib179 article-title: Novel image-based rapid RUL prediction for Li-Ion batteries using a capsule network and transfer learning publication-title: IEEE Trans. Transp. Electrification – volume: 45 start-page: 16633 year: 2021 end-page: 16648 ident: bib237 article-title: Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach publication-title: Int. J. Energy Res. – volume: 16 start-page: 206 year: 2021 end-page: 214 ident: bib249 article-title: Remaining useful life prediction of lithium batteries based on extended kalman particle filter publication-title: IEEJ Trans. Electr. Electron. Eng. – volume: 64 start-page: 106 year: 2016 end-page: 128 ident: bib11 article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles publication-title: Renew. Sustain. Energy Rev. – volume: 12 start-page: 2784 year: 2019 ident: bib61 article-title: Battery remaining useful life prediction with inheritance particle filtering publication-title: Energies – volume: 9 start-page: 177 year: 2023 ident: bib230 article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method publication-title: Batteries – volume: 10 start-page: 6637 year: 2020 ident: bib177 article-title: SOH estimation of lithium-ion battery pack based on integrated state information from cells publication-title: Appl. Sci. – volume: 12 start-page: 3271 year: 2019 ident: bib236 article-title: Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model publication-title: Energies – volume: 7 start-page: 160043 year: 2019 end-page: 160061 ident: bib51 article-title: A novel machine learning method based approach for Li-Ion battery prognostic and health management publication-title: IEEE Access – volume: 11 start-page: 1099 year: 2021 ident: bib106 article-title: Comparison of lead-acid and Li-Ion batteries lifetime prediction models in stand-alone photovoltaic systems publication-title: Appl. Sci. – volume: 45 start-page: 1570 year: 2023 end-page: 1578 ident: bib13 article-title: Thermal monitoring of lithium-ion batteries based on machine learning and fibre bragg grating sensors publication-title: Trans. Inst. Meas. Control – volume: 4 start-page: 383 year: 2019 end-page: 391 ident: bib93 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy – volume: 60 year: 2023 ident: bib112 article-title: An application-oriented lithium-ion battery degradation modelling framework for ageing prediction publication-title: J. Energy Storage – volume: 69 start-page: 6635 year: 2022 end-page: 6644 ident: bib212 article-title: State-of-Charge estimation for lithium-ion batteries based on fuzzy information granulation and asymmetric gaussian membership function publication-title: IEEE Trans. Ind. Electron. – reference: .. – volume: 345 year: 2020 ident: bib143 article-title: Study on lithium plating caused by inconsistent electrode decay rate during aging of traction batteries publication-title: Solid State Ionics – volume: 13 start-page: 16770 year: 2025 end-page: 16786 ident: bib14 article-title: A joint forgetting factor-based adaptive extended kalman filtering approach to predict the state-of-charge and model parameter of lithium-ion battery publication-title: IEEE Access – volume: 11 start-page: 1706 year: 2020 ident: bib169 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 223 year: 2021 ident: bib174 article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries publication-title: Energy – volume: 5 start-page: 229 year: 2020 end-page: 252 ident: bib116 article-title: Designing solid-state electrolytes for safe, energy-dense batteries publication-title: Nat. Rev. Mater. – volume: 230 year: 2022 ident: bib150 article-title: Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms publication-title: Reliab. Eng. Syst. Saf. – volume: 459 year: 2020 ident: bib221 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Sources – start-page: 2430 year: 2022 ident: bib35 article-title: (Digital presentation) data-driven prognosis of battery failure detection and prediction publication-title: Electrochem. Soc. – volume: 29 start-page: 3597 year: 2023 end-page: 3607 ident: bib50 article-title: Hybrid gray wolf optimization method in support vector regression framework for highly precise prediction of remaining useful life of lithium-ion batteries publication-title: Ionics – volume: 13 start-page: 1675 year: 2021 ident: bib121 article-title: Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for lithium-ion battery publication-title: Polymers – volume: 226 year: 2023 ident: bib164 article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging publication-title: Appl. Therm. Eng. – volume: 7 start-page: 105186 year: 2019 end-page: 105201 ident: bib132 article-title: State-of-Health estimation for lithium-ion batteries based on wiener process with modeling the relaxation effect publication-title: IEEE Access – volume: 61 start-page: 773 year: 2021 end-page: 781 ident: bib183 article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine publication-title: J. Manuf. Syst. – volume: 61 year: 2023 ident: bib71 article-title: A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries publication-title: J. Energy Storage – volume: 9 start-page: 325 year: 2023 ident: bib186 article-title: A novel fine-tuning model based on transfer learning for future capacity prediction of lithium-ion batteries publication-title: Batteries – volume: 44 start-page: 6767 year: 2020 end-page: 6777 ident: bib239 article-title: Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks publication-title: Int. J. Energy Res. – volume: 16 start-page: 4736 year: 2020 end-page: 4746 ident: bib204 article-title: Data-driven battery health prognosis using adaptive brownian motion model publication-title: IEEE Trans. Ind. Inf. – volume: 271 start-page: 152 year: 2014 end-page: 159 ident: bib141 article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction publication-title: J. Power Sources – volume: 219 year: 2023 ident: bib166 article-title: Remaining useful life prediction of - lithium batteries based on principal component analysis and improved Gaussian process regression publication-title: Appl. Therm. Eng. – volume: 38 start-page: 1054 year: 2023 end-page: 1063 ident: bib227 article-title: Prognostics of remaining useful life for lithium-ion batteries based on hybrid approach of linear pattern extraction and nonlinear relationship mining publication-title: IEEE Trans. Power Electron. – volume: 15 start-page: 3331 year: 2022 ident: bib207 article-title: A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution publication-title: Materials – volume: 15 start-page: 4772 issue: 10 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib139 article-title: Improving performances of the electrode/electrolyte interface via the regulation of solvation complexes: a review and prospect publication-title: Nanoscale doi: 10.1039/D2NR07273D – volume: 70 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib21 article-title: Data-driven prognosis of failure detection and prediction of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108045 – volume: 481 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib97 article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228861 – volume: 384 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib157 article-title: Battery degradation model and multiple-indicators based lifetime estimator for energy storage system design and operation: experimental analyses of cycling-induced aging publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138294 – volume: 16 start-page: 2484 issue: 5 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib129 article-title: Application of variable-order fractional calculus to the modeling of calendar aging in lithium-ion batteries publication-title: Energies doi: 10.3390/en16052484 – volume: 68 start-page: 3485 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib256 article-title: A novel prognostics approach using shifting kernel particle filter of Li-Ion batteries under State changes publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2978688 – volume: 2 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib5 article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries publication-title: eTransportation doi: 10.1016/j.etran.2019.100034 – volume: 6 start-page: 125 year: 2016 ident: 10.1016/j.jpowsour.2025.238192_bib208 article-title: Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells publication-title: J. Energy Storage doi: 10.1016/j.est.2016.02.005 – volume: 50 start-page: 4006 issue: 6 year: 2013 ident: 10.1016/j.jpowsour.2025.238192_bib127 article-title: Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2014.2321028 – volume: 120 start-page: 179 year: 2017 ident: 10.1016/j.jpowsour.2025.238192_bib158 article-title: Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2016.12.110 – start-page: 555 year: 2016 ident: 10.1016/j.jpowsour.2025.238192_bib240 article-title: Remaining useful life estimation of lithium-ion batteries based on a new capacity degradation model – volume: 2 start-page: 913 issue: 1 year: 2012 ident: 10.1016/j.jpowsour.2025.238192_bib98 article-title: Gassing in Li4Ti5O12-based batteries and its remedy publication-title: Sci. Rep. doi: 10.1038/srep00913 – volume: 16 start-page: 3096 issue: 7 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib156 article-title: Remaining-useful-life prediction for Li-Ion batteries publication-title: Energies doi: 10.3390/en16073096 – volume: 170 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib218 article-title: Prediction of battery SOH and RUL based on cooperative characteristics in voltage-temperature-time dimensions publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acde10 – volume: 12 start-page: 2784 issue: 14 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib61 article-title: Battery remaining useful life prediction with inheritance particle filtering publication-title: Energies doi: 10.3390/en12142784 – volume: 169 issue: 6 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib187 article-title: Review—“Knees”in lithium-ion battery aging trajectories publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac6d13 – volume: 10 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib47 article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.937035 – volume: 10 start-page: 6637 issue: 19 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib177 article-title: SOH estimation of lithium-ion battery pack based on integrated state information from cells publication-title: Appl. Sci. doi: 10.3390/app10196637 – volume: 2 start-page: 161 issue: 3 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib192 article-title: Predicting the state of charge and health of batteries using data-driven machine learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0156-7 – volume: 80 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib133 article-title: Advanced electrolyte design for stable lithium metal anode: from liquid to solid publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105516 – volume: 37 start-page: 1232 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib268 article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator publication-title: Energy – volume: 17 start-page: 1643 year: 2024 ident: 10.1016/j.jpowsour.2025.238192_bib18 article-title: Advances in the study of techniques to determine the lithium-ion battery's state of charge publication-title: Energies doi: 10.3390/en17071643 – volume: 16 start-page: 206 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib249 article-title: Remaining useful life prediction of lithium batteries based on extended kalman particle filter publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23287 – volume: 45 start-page: 7732 issue: 5 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib134 article-title: A practical approach to predict volume deformation of lithium‐ion batteries from crystal structure changes of electrode materials publication-title: Int. J. Energy Res. doi: 10.1002/er.6355 – volume: 271 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib72 article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115232 – volume: 11 start-page: 6335 issue: 2 year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib26 article-title: Life-cycle state-of-charge estimation for lithium-ion battery considering coulomb efficiency and capacity decay publication-title: IEEE Trans. Transp. Electrification doi: 10.1109/TTE.2024.3506778 – volume: 60 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib112 article-title: An application-oriented lithium-ion battery degradation modelling framework for ageing prediction publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106640 – volume: 16 start-page: 1420 issue: 3 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib241 article-title: Research on state-of-health estimation for lithium-ion batteries based on the charging phase publication-title: Energies doi: 10.3390/en16031420 – volume: 7 start-page: 382 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib258 article-title: Battery health prediction using fusion-based feature selection and machine learning publication-title: IEEE Trans. Transp. Electrification doi: 10.1109/TTE.2020.3017090 – volume: 6 start-page: 487 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib130 article-title: Corrosion of lithium metal anodes during calendar ageing and its microscopic origins publication-title: Nat. Energy doi: 10.1038/s41560-021-00787-9 – volume: 11 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib216 article-title: Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features publication-title: Front. Energy Res. doi: 10.3389/fenrg.2023.1059701 – volume: 180 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib91 article-title: Life cycle analysis of LiCoO2/graphite batteries with cooling using combined electrochemical-thermal modeling publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2022.106204 – volume: 16 start-page: 767 issue: 2 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib66 article-title: Lithium-Ion battery life prediction method under thermal gradient conditions publication-title: Energies doi: 10.3390/en16020767 – volume: 10 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib217 article-title: Remaining useful life prognostics of lithium-ion batteries based on a coordinate reconfiguration of degradation trajectory and multiple linear regression publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.1033039 – volume: 9 start-page: 177 issue: 3 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib230 article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method publication-title: Batteries doi: 10.3390/batteries9030177 – volume: 263 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib269 article-title: Life prediction model for lithium-ion battery considering fast-charging protocol publication-title: Energy doi: 10.1016/j.energy.2022.126109 – volume: 44 start-page: 6767 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib239 article-title: Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks publication-title: Int. J. Energy Res. doi: 10.1002/er.5413 – volume: 214 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib90 article-title: Prognostics for lithium-ion batteries using a two-phase gamma degradation process model publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107797 – volume: 5 start-page: 299 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib144 article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 61 start-page: 773 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib183 article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.03.019 – volume: 68 start-page: 9543 issue: 10 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib42 article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2932605 – volume: 38 start-page: 1054 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib227 article-title: Prognostics of remaining useful life for lithium-ion batteries based on hybrid approach of linear pattern extraction and nonlinear relationship mining publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2022.3182135 – volume: 16 start-page: 313 issue: 1 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib56 article-title: Remaining useful life prediction for lithium-ion batteries based on improved variational mode decomposition and machine learning algorithm publication-title: IEEE Access – volume: 5 start-page: 1225 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib264 article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries publication-title: IEEE Trans. Transp. Electrification doi: 10.1109/TTE.2019.2944802 – volume: 456 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib101 article-title: A comprehensive single-particle-degradation model for battery state-of-health prediction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227950 – volume: 234 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib146 article-title: Remaining useful life prediction of lithium battery based on capacity regeneration point detection publication-title: Energy doi: 10.1016/j.energy.2021.121233 – volume: 230 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib150 article-title: Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms publication-title: Reliab. Eng. Syst. Saf. – volume: 13 start-page: 1675 issue: 11 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib121 article-title: Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for lithium-ion battery publication-title: Polymers doi: 10.3390/polym13111675 – volume: 131 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib252 article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110015 – volume: 9 start-page: 1115 issue: 8 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib246 article-title: Prediction of remaining useful life for lithium‐ion battery based on particle filter with residual resampling publication-title: Energy Sci. Eng. doi: 10.1002/ese3.877 – volume: 10 start-page: 119040 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib30 article-title: A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction publication-title: IEEE IEEE Veh. Technol. Soc. Section – volume: 144 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib198 article-title: Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111004 – volume: 174 start-page: 335 issue: 1 year: 2007 ident: 10.1016/j.jpowsour.2025.238192_bib126 article-title: Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.025 – start-page: 2430 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib35 article-title: (Digital presentation) data-driven prognosis of battery failure detection and prediction publication-title: Electrochem. Soc. – volume: 40 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib223 article-title: Battery monitoring system using machine learning publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102741 – volume: 69 start-page: 6984 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib17 article-title: Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3095815 – volume: 219 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib165 article-title: A review on lithium-ion battery thermal management system techniques: a control-oriented analysis publication-title: Appl. Therm. Eng. – volume: 271 start-page: 152 year: 2014 ident: 10.1016/j.jpowsour.2025.238192_bib141 article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.07.168 – volume: 44 start-page: 6502 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib168 article-title: State of health prediction model based on internal resistance publication-title: Int. J. Energy Res. doi: 10.1002/er.5383 – volume: 72 start-page: 5934 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib203 article-title: Ensemble remaining useful life prediction for lithium-ion batteries with the fusion of historical and real-time degradation data publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2023.3234159 – volume: 11 start-page: 175 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib41 article-title: Multi-kernel relevance vector machine with parameter optimization for cycling aging prediction of lithium-ion batteries publication-title: IEEE J. Emerg. Selected Topics Power Electron. doi: 10.1109/JESTPE.2021.3133697 – volume: 234 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib145 article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM publication-title: Energy doi: 10.1016/j.energy.2021.121269 – volume: 15 start-page: 9165 issue: 23 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib99 article-title: Electrochemical failure results inevitable capacity degradation in Li-Ion Batteries-A review publication-title: Energies doi: 10.3390/en15239165 – volume: 24 issue: 2 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib111 article-title: Battery lifetime prediction and performance assessment of different modeling approaches publication-title: iScience doi: 10.1016/j.isci.2021.102060 – volume: 214 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib60 article-title: Remaining useful life prediction of lithium-ion batteries based on wiener process under time-varying temperature condition publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107675 – volume: 164 start-page: 351 issue: 1 year: 2007 ident: 10.1016/j.jpowsour.2025.238192_bib115 article-title: A review on the separators of liquid electrolyte Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.065 – volume: 16 start-page: 803 issue: 2 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib77 article-title: Prognosis of lithium-ion batteries' remaining useful life based on a sequence-to-sequence model with variational mode decomposition publication-title: Energies doi: 10.3390/en16020803 – volume: 232 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib219 article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network publication-title: Energy doi: 10.1016/j.energy.2021.121022 – volume: 9 start-page: 3995 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib109 article-title: Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10378K – volume: 23 start-page: 2587 issue: 5 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib154 article-title: Prediction of state of health of lithium-ion battery using health index informed attention model publication-title: Sensors doi: 10.3390/s23052587 – volume: 7 start-page: 34 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib6 article-title: Exploring the economics of large scale lithium ion and lead acid batteries performing frequency response publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.02.058 – volume: 18 start-page: 2965 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib262 article-title: Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3106593 – volume: 278 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib27 article-title: Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115646 – volume: 166 start-page: 796 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib62 article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system publication-title: Energy doi: 10.1016/j.energy.2018.10.131 – volume: 7 start-page: 150383 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib261 article-title: State-of-Health prediction for lithium-ion batteries with multiple gaussian process regression model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947294 – volume: 259 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib243 article-title: A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries publication-title: Knowl. Base Syst. – volume: 4 start-page: 540 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib161 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 539 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib194 article-title: A four parameter model for the solid-electrolyte interphase to predict battery aging during operation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231560 – volume: 113 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib29 article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109254 – volume: 459 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib221 article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228069 – volume: 237 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib254 article-title: A power model considering initial battery state for remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109361 – volume: 133 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib188 article-title: A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2023.105451 – volume: 8 start-page: 142557 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib46 article-title: Multi-parameter optimization method for remaining useful life prediction of lithium-ion batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011625 – volume: 243 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib69 article-title: A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery publication-title: Energy – volume: 10 issue: 11 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib138 article-title: Investigation on the performance and recession mechanisms of high nickel ternary lithium‐ion batteries under artificial aging discharge rates publication-title: Energy Technol. doi: 10.1002/ente.202200600 – volume: 152 issue: 4 year: 2005 ident: 10.1016/j.jpowsour.2025.238192_bib184 article-title: Cyclable lithium and capacity loss in Li-Ion cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1870752 – volume: 25 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib87 article-title: Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100911 – volume: 1 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib96 article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle publication-title: eTransportation doi: 10.1016/j.etran.2019.100005 – volume: 360 start-page: 28 year: 2017 ident: 10.1016/j.jpowsour.2025.238192_bib84 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.110 – volume: 41 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib7 article-title: Choosing the best lifetime model for commercial lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102827 – volume: 482 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib176 article-title: Data-driven analysis on thermal effects and temperature changes of lithium-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228983 – volume: 145 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib58 article-title: Remaining useful life prediction of lithium-ion batteries based on KS agglomeration function integrating multi-expert knowledge publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2023.114985 – volume: 527 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib270 article-title: Feature engineering for machine learning enabled early prediction of battery lifetime publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231127 – volume: 148 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib244 article-title: Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111287 – volume: 4 start-page: 383 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib93 article-title: Data-driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy doi: 10.1038/s41560-019-0356-8 – volume: 33 start-page: 2035 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib147 article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05105-0 – volume: 218 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib107 article-title: A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current publication-title: Energy doi: 10.1016/j.energy.2020.119490 – volume: 22 start-page: 697 issue: 4 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib229 article-title: LSTM model-based SOH prediction for lithium-ion battery publication-title: J. Digital Contents Soc. doi: 10.9728/dcs.2021.22.4.697 – volume: 11 start-page: 1099 issue: 3 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib106 article-title: Comparison of lead-acid and Li-Ion batteries lifetime prediction models in stand-alone photovoltaic systems publication-title: Appl. Sci. doi: 10.3390/app11031099 – volume: 120 start-page: 6783 issue: 14 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib124 article-title: New concepts in electrolytes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00531 – volume: 64 start-page: 106 year: 2016 ident: 10.1016/j.jpowsour.2025.238192_bib11 article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.05.033 – volume: 11 issue: 6 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib238 article-title: State‐of‐Charge prediction of lithium‐ion batteries based on sparse autoencoder and gated recurrent unit neural network publication-title: Energy Technol. doi: 10.1002/ente.202201510 – volume: 225 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib81 article-title: Early prediction of battery lifetime via a machine learning based framework publication-title: Energy doi: 10.1016/j.energy.2021.120205 – volume: 19 start-page: 6471 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib245 article-title: Semi-supervised self-learning-based lifetime prediction for batteries publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3206776 – volume: 442 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib16 article-title: Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227228 – volume: 210 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib55 article-title: Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.107542 – volume: 556 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib167 article-title: Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232432 – year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib15 article-title: 2D TMD-based lateral heterostructures: preparation, property, and application publication-title: Adv. Funct. Mater. – volume: 171 start-page: 1173 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib102 article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2019.01.083 – volume: 45 start-page: 1570 issue: 8 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib13 article-title: Thermal monitoring of lithium-ion batteries based on machine learning and fibre bragg grating sensors publication-title: Trans. Inst. Meas. Control doi: 10.1177/01423312221143776 – volume: 6 start-page: 7 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib137 article-title: A review of Solid Electrolyte Interphase (SEI) and dendrite formation in lithium batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00147-5 – volume: 261 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib135 article-title: A review of the state of health for lithium-ion batteries: research status and suggestions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120813 – start-page: 1004 year: 2018 ident: 10.1016/j.jpowsour.2025.238192_bib79 article-title: Research on modeling method of life prediction for satellite lithium battery based on SVR – volume: 41 start-page: 24 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib189 article-title: Deep neural network battery impedance spectra prediction by only using constant-current curve publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.05.047 – volume: 67 start-page: 92 year: 2018 ident: 10.1016/j.jpowsour.2025.238192_bib247 article-title: The Co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2751613 – volume: 7 start-page: 141549 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib182 article-title: A method for interval prediction of satellite battery state of health based on sample entropy publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939593 – volume: 50 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib222 article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101405 – start-page: 2779 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib49 article-title: (Digital presentation) data-driven prognosis of lithium-ion batteries thermal runaway early warning and detection publication-title: Electrochem. Soc. – volume: 4 start-page: 683 issue: 8 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib125 article-title: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte publication-title: Nat. Energy doi: 10.1038/s41560-019-0428-9 – volume: 9 start-page: 3012 issue: 15 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib88 article-title: Semi-empirical capacity fading model for SoH estimation of Li-Ion batteries publication-title: Appl. Sci. doi: 10.3390/app9153012 – volume: 69 start-page: 14765 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib175 article-title: Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3039553 – volume: 120 start-page: 6878 issue: 14 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib117 article-title: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00101 – volume: 231 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib242 article-title: Prognostics of lithium-ion batteries using knowledge-constrained machine learning and Kalman filtering publication-title: Reliab. Eng. Syst. Saf. – volume: 6 start-page: 37 issue: 3 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib197 article-title: Lithium-ion battery modeling including degradation based on single-particle approximations publication-title: Batteries doi: 10.3390/batteries6030037 – ident: 10.1016/j.jpowsour.2025.238192_bib128 doi: 10.1109/TIE.2022.3148743 – volume: 9 start-page: 325 issue: 6 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib186 article-title: A novel fine-tuning model based on transfer learning for future capacity prediction of lithium-ion batteries publication-title: Batteries doi: 10.3390/batteries9060325 – volume: 442 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib118 article-title: Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136245 – volume: 438 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib73 article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227015 – volume: 67 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib86 article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107557 – volume: 11 start-page: 1706 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib169 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-15235-7 – volume: 40 start-page: 1850 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib171 article-title: Feature construction for on-board early prediction of electric vehicle battery cycle life publication-title: Kor. J. Chem. Eng. doi: 10.1007/s11814-023-1476-1 – volume: 10 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib196 article-title: Study on lithium-ion battery degradation caused by side reactions in fast-charging process publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.905710 – volume: 9 start-page: 1299 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib76 article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.121 – volume: 9 start-page: 2191 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib110 article-title: Twin‐model framework development for a comprehensive battery lifetime prediction validated with a realistic driving profile publication-title: Energy Sci. Eng. doi: 10.1002/ese3.973 – volume: 21 start-page: 510 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib215 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Energy Storage doi: 10.1016/j.est.2018.12.011 – volume: 164 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib235 article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation publication-title: Measurement doi: 10.1016/j.measurement.2020.108052 – volume: 563 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib160 article-title: Lithium-ion battery lifetime extension: a review of derating methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232805 – volume: 7 start-page: 2797 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib44 article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries publication-title: Energy Sci. Eng. doi: 10.1002/ese3.460 – volume: 11 issue: 16 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib140 article-title: A growing appreciation for the role of LiF in the solid electrolyte interphase publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100046 – volume: 18 start-page: 1888 year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib19 article-title: Analysis of state-of-charge estimation methods for Li-Ion batteries considering wide temperature range publication-title: Energies doi: 10.3390/en18051188 – volume: 61 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib65 article-title: A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106645 – volume: 13 start-page: 2619 issue: 13 year: 2024 ident: 10.1016/j.jpowsour.2025.238192_bib113 article-title: Remaining useful life prediction of lithium-ion batteries based on neural network and adaptive unscented kalman filter publication-title: Appl. Energy – volume: 15 start-page: 5014 issue: 6 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib193 article-title: Review of state estimation and remaining useful life prediction methods for lithium-ion batteries publication-title: Sustainability doi: 10.3390/su15065014 – volume: 285 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib266 article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm publication-title: Energy doi: 10.1016/j.energy.2023.128761 – volume: 12 start-page: 2247 issue: 12 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib149 article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon publication-title: Energies doi: 10.3390/en12122247 – volume: 64 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib228 article-title: State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107161 – volume: 9 start-page: 224 issue: 4 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib53 article-title: A multi-stage adaptive method for remaining useful life prediction of lithium-ion batteries based on swarm intelligence optimization publication-title: Batteries doi: 10.3390/batteries9040224 – volume: 147 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib148 article-title: Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena publication-title: Measurement doi: 10.1016/j.measurement.2019.07.064 – volume: 44 start-page: 1724 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib251 article-title: Remaining useful life prediction of lithium‐ion battery based on extended kalman particle filter publication-title: Int. J. Energy Res. doi: 10.1002/er.5002 – volume: 11 start-page: 4671 issue: 10 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib104 article-title: Solid-state lithium battery cycle life prediction using machine learning publication-title: Appl. Sci. doi: 10.3390/app11104671 – volume: 94 start-page: 603 issue: 4 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib178 article-title: Shaking lithium‐ion cells on a Rocker-Temperature‐Dependent influence of mechanical movement on lithium‐ion battery lifetime publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201800218 – volume: 345 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib143 article-title: Study on lithium plating caused by inconsistent electrode decay rate during aging of traction batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2019.115193 – volume: 45 start-page: 14692 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib200 article-title: A novel dual time scale life prediction method for lithium‐ion batteries considering effects of temperature and state of charge publication-title: Int. J. Energy Res. doi: 10.1002/er.6746 – volume: 10 start-page: 3549 issue: 10 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib234 article-title: Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries publication-title: Appl. Sci. doi: 10.3390/app10103549 – volume: 7 start-page: 2862 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib271 article-title: Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.05.019 – volume: 12 start-page: 1685 issue: 9 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib89 article-title: Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect publication-title: Energies doi: 10.3390/en12091685 – volume: 229 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib114 article-title: A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120684 – volume: 11 start-page: 57 issue: 1 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib159 article-title: Lifetime extension of lithium-ion batteries with low-frequency pulsed current charging publication-title: IEEE J. Emerg. Selected Topics Power Electron. doi: 10.1109/JESTPE.2021.3130424 – volume: 29 start-page: 3597 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib50 article-title: Hybrid gray wolf optimization method in support vector regression framework for highly precise prediction of remaining useful life of lithium-ion batteries publication-title: Ionics doi: 10.1007/s11581-023-05072-1 – volume: 18 issue: 5 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib250 article-title: Remaining useful life prediction of lithium‐ion battery based on an improved particle filter algorithm publication-title: Int. J. Electrochem. Sci. – volume: 170 issue: 5 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib22 article-title: Data-driven prognosis of multiscale and multiphysics complex system anomalies: its application to lithium-ion batteries failure detection publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acd300 – volume: 39 start-page: 2230 issue: 4 year: 2024 ident: 10.1016/j.jpowsour.2025.238192_bib24 article-title: Data-driven state of health estimation method of lithium-ion batteries for partial charging curves publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2024.3407136 – volume: 172 start-page: 894 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib67 article-title: Data-driven predictive prognostic model for power batteries based on machine learning publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.02.081 – volume: 219 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib166 article-title: Remaining useful life prediction of - lithium batteries based on principal component analysis and improved Gaussian process regression publication-title: Appl. Therm. Eng. – volume: 230 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib263 article-title: Research on state of health prediction model for lithium batteries based on actual diverse data publication-title: Energy doi: 10.1016/j.energy.2021.120851 – volume: 61 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib71 article-title: A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106788 – volume: 62 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib255 article-title: Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106790 – volume: 6 issue: 6 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib3 article-title: Prelithiation enhances cycling life of lithium‐ion batteries: a mini review publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12501 – volume: 4 start-page: 540 issue: 7 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib2 article-title: Challenges and opportunities towards fast-charging battery materials publication-title: Nat. Energy doi: 10.1038/s41560-019-0405-3 – volume: 49 start-page: 1569 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib94 article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00863E – volume: 15 start-page: 1602 issue: 2 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib54 article-title: Remaining useful life prediction for lithium-ion batteries based on the partial voltage and temperature publication-title: IEEE Access – volume: 7 start-page: 39474 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib260 article-title: Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905740 – volume: 226 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib164 article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120303 – volume: 70 start-page: 6613 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib191 article-title: Online equivalent degradation indicator calculation for remaining charging-discharging cycle determination of lithium-ion batteries publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3087004 – volume: 376 start-page: 95 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib57 article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.074 – volume: 179 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib75 article-title: Sequential application of denoising autoencoder and long-short recurrent convolutional network for noise-robust remaining-useful-life prediction framework of lithium-ion batteries publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2023.109231 – volume: 329 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib83 article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120289 – volume: 11 start-page: 1359 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib131 article-title: Optimal scheduling and cost-benefit analysis of lithium-ion batteries based on battery state of health publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3232282 – volume: 17 start-page: 3478 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib233 article-title: A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.3008223 – volume: 21 start-page: 1087 issue: 4 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib92 article-title: Life prediction of battery using a neural gaussian process with early discharge characteristics publication-title: Sensors doi: 10.3390/s21041087 – volume: 292 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib20 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress publication-title: J. Clean. Prod. – volume: 15 start-page: 3331 issue: 9 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib207 article-title: A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution publication-title: Materials doi: 10.3390/ma15093331 – volume: 13 start-page: 375 issue: 2 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib172 article-title: SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators publication-title: Energies doi: 10.3390/en13020375 – volume: 69 start-page: 12775 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib210 article-title: A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3024019 – volume: 16 start-page: 338 issue: 2 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib34 article-title: Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03019E – volume: 182 start-page: 1 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib199 article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.09.018 – volume: 69 start-page: 6635 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib212 article-title: State-of-Charge estimation for lithium-ion batteries based on fuzzy information granulation and asymmetric gaussian membership function publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3097613 – volume: 11 start-page: 143 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib151 article-title: Remaining useful life prediction of lithium-ion batteries: a hybrid approach of grey–markov chain model and improved gaussian process publication-title: IEEE J. Emerg. Selected Topics Power Electron. doi: 10.1109/JESTPE.2021.3098378 – volume: 561 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib85 article-title: Model-based health-aware fast charging to mitigate the risk of lithium plating and prolong the cycle life of lithium-ion batteries in electric vehicles publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232586 – volume: 7 start-page: 160043 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib51 article-title: A novel machine learning method based approach for Li-Ion battery prognostic and health management publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947843 – volume: 112 year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib37 article-title: Fault diagnosis of energy storage batteries based on dual driving of data and models publication-title: J. Energy Storage doi: 10.1016/j.est.2025.115485 – volume: 476 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib82 article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228581 – volume: 230 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib226 article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108920 – volume: 64 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib173 article-title: State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107179 – volume: 70 start-page: 1269 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib259 article-title: Predictive battery health management with transfer learning and online model correction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3055811 – volume: 68 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib224 article-title: A novel method of prediction for capacity and remaining useful life of lithium-ion battery based on multi-time scale Weibull accelerated failure time regression publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107589 – volume: 476 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib213 article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228654 – volume: 213 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.jpowsour.2025.238192_bib32 article-title: Remaining useful life estimation-A review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.018 – volume: 5 start-page: 229 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib116 article-title: Designing solid-state electrolytes for safe, energy-dense batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 25 start-page: 646 issue: 4 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib209 article-title: Multi-fractal weibull adaptive model for the remaining useful life prediction of electric vehicle lithium batteries publication-title: Entropy doi: 10.3390/e25040646 – volume: 68 start-page: 10949 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib253 article-title: Dynamic bayesian network-based lithium-ion battery health prognosis for electric vehicles publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.3034855 – volume: 34 issue: 1 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib142 article-title: Encapsulation of metallic Zn in a hybrid MXene/Graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.202106897 – volume: 159 start-page: 716 year: 2018 ident: 10.1016/j.jpowsour.2025.238192_bib162 article-title: Elevated temperature for life extension of lithium ion power cells publication-title: Energy doi: 10.1016/j.energy.2018.06.169 – volume: 5 start-page: 105 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib123 article-title: Understanding interface stability in solid-state batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0157-5 – volume: 208 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib170 article-title: Life prediction of lithium-ion batteries based on stacked denoising autoencoders publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107396 – year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib52 article-title: Zwitterionic poly(ionic liquid)-induced fast structural diffusion electrolytes for lithium metal batteries publication-title: Chin. Chem. Lett. – volume: 65 start-page: 4328 year: 2016 ident: 10.1016/j.jpowsour.2025.238192_bib163 article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2473841 – start-page: 1864 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib38 article-title: Data-driven prognosis of the failure of lithium-ion batteries publication-title: ECS Meeting Abstracts doi: 10.1149/MA2021-0251864mtgabs – volume: 186 start-page: 51 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib78 article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2019.02.011 – volume: 14 start-page: 8072 issue: 23 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib122 article-title: Degradation of lithium-ion batteries in an electric transport complex publication-title: Energies doi: 10.3390/en14238072 – volume: 13 start-page: 752 issue: 3 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib48 article-title: A data-driven method with feature enhancement and adaptive optimization for lithium-ion battery remaining useful life prediction publication-title: Energies doi: 10.3390/en13030752 – volume: 14 start-page: 1732 issue: 6 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib105 article-title: The degradation behavior of LiFePO4/C batteries during long-term calendar aging publication-title: Energies doi: 10.3390/en14061732 – volume: 7 start-page: 87178 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib45 article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2925468 – volume: 42 start-page: 1973 year: 2018 ident: 10.1016/j.jpowsour.2025.238192_bib59 article-title: Fast computational framework for optimal life management of lithium ion batteries publication-title: Int. J. Energy Res. doi: 10.1002/er.3996 – volume: 223 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib174 article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2021.120114 – volume: 212 start-page: 240 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib265 article-title: Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.041 – start-page: 385 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib25 article-title: Data-driven prognosis of lithium-ion batteries thermal runaway: a novel machine learning approach publication-title: ECS Meeting Abstracts – volume: 45 start-page: 16633 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib237 article-title: Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach publication-title: Int. J. Energy Res. doi: 10.1002/er.6910 – volume: 12 start-page: 8544 issue: 20 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib108 article-title: Scale-Up of physics-based models for predicting degradation of large lithium ion batteries publication-title: Sustainability doi: 10.3390/su12208544 – volume: 61 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib214 article-title: A novel hybrid model for lithium-ion batteries lifespan prediction with high accuracy and interpretability publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106728 – volume: 9 start-page: 1131 year: 2018 ident: 10.1016/j.jpowsour.2025.238192_bib103 article-title: Modeling of lithium-ion battery degradation for cell life assessment publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2578950 – volume: 1 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib70 article-title: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries publication-title: eTransportation doi: 10.1016/j.etran.2019.100004 – volume: 34 issue: 8 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib1 article-title: Interfacial design for a 4.6 V high‐voltage single‐crystalline LiCoO2 cathode publication-title: Adv. Mater. doi: 10.1002/adma.202108353 – volume: 22 start-page: 587 issue: 3 year: 2010 ident: 10.1016/j.jpowsour.2025.238192_bib100 article-title: Challenges for rechargeable li batteries publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 16 start-page: 4736 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib204 article-title: Data-driven battery health prognosis using adaptive brownian motion model publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2948018 – volume: 470 year: 2024 ident: 10.1016/j.jpowsour.2025.238192_bib23 article-title: Competition between discharge reaction and side reaction for anode's lithium during internal short circuit in lithium-ion batteries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.143280 – volume: 8 start-page: 20786 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib232 article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968939 – volume: 16 start-page: 3767 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib257 article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2941747 – volume: 74 start-page: 1 year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib36 article-title: SOC estimation of lithium-ion battery pack based on discharge stage division and fusion modeling publication-title: IEEE Trans. Instrum. Meas. – volume: 292 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib152 article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116897 – volume: 10 start-page: 487 issue: 4 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib181 article-title: Novel practical life cycle prediction method by entropy estimation of Li-Ion battery publication-title: Electronics doi: 10.3390/electronics10040487 – volume: 15 start-page: 9176 issue: 12 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib64 article-title: Remaining useful life prediction for lithium-ion batteries based on improved mode decomposition and time series publication-title: IEEE Access – volume: 69 start-page: 10854 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib211 article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method publication-title: J. Power Sources – volume: 4 start-page: 310 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib28 article-title: Battery lifetime prognostics publication-title: Joule doi: 10.1016/j.joule.2019.11.018 – volume: 8 start-page: 123858 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib190 article-title: State of health estimation for lithium-ion battery using empirical degradation and error compensation models publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005229 – volume: 4 start-page: 187 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib120 article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z – volume: 57 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib31 article-title: Remaining life prediction of lithium-ion batteries based on health management: a review publication-title: J. Energy Storage doi: 10.1016/j.est.2022.106193 – volume: 179 start-page: 793 issue: 2 year: 2008 ident: 10.1016/j.jpowsour.2025.238192_bib195 article-title: Capacity fade analysis of a lithium ion cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.01.028 – volume: 13 start-page: 16770 year: 2025 ident: 10.1016/j.jpowsour.2025.238192_bib14 article-title: A joint forgetting factor-based adaptive extended kalman filtering approach to predict the state-of-charge and model parameter of lithium-ion battery publication-title: IEEE Access doi: 10.1109/ACCESS.2025.3533137 – volume: 12 start-page: 3271 issue: 17 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib236 article-title: Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model publication-title: Energies doi: 10.3390/en12173271 – volume: 70 start-page: 531 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib155 article-title: Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.03.011 – volume: 7 start-page: 105186 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib132 article-title: State-of-Health estimation for lithium-ion batteries based on wiener process with modeling the relaxation effect publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923095 – volume: 16 start-page: 1469 issue: 3 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib267 article-title: A review of remaining useful life prediction for energy storage components based on stochastic filtering methods publication-title: Energies doi: 10.3390/en16031469 – volume: 9 start-page: 85431 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib40 article-title: State of health diagnosis and remaining useful life prediction of lithium-ion batteries based on multi-feature data and mechanism fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083395 – volume: 56 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib33 article-title: Review of “grey box” lifetime modeling for lithium-ion battery: combining physics and data-driven methods publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105992 – volume: 13 start-page: 2911 year: 2017 ident: 10.1016/j.jpowsour.2025.238192_bib205 article-title: RUL prediction of deteriorating products using an adaptive wiener process model publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2684821 – volume: 69 start-page: 14657 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib10 article-title: An MPC-based control strategy for electric vehicle battery cooling considering energy saving and battery lifespan publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3032989 – volume: 485 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib74 article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229327 – volume: 339 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib185 article-title: Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120954 – volume: 19 start-page: 2380 issue: 9 year: 2020 ident: 10.1016/j.jpowsour.2025.238192_bib231 article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD publication-title: Energies doi: 10.3390/en13092380 – volume: 16 start-page: 953 issue: 2 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib9 article-title: Second life of lithium-ion batteries of electric vehicles: a short review and perspectives publication-title: Energies doi: 10.3390/en16020953 – volume: 336 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib180 article-title: Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120808 – volume: 11 issue: 9 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib68 article-title: Prediction of lithium‐ion battery remaining useful life via empirical mode decomposition‐autoregressive integrated moving average and regularized particle filter algorithm publication-title: Energy Technol. doi: 10.1002/ente.202300232 – volume: 236 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib225 article-title: Parallel state fusion LSTM-based early-cycle stage lithium-ion battery RUL prediction under Lebesgue sampling framework publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109315 – ident: 10.1016/j.jpowsour.2025.238192_bib119 doi: 10.1021/acs.chemrev.9b00427 – volume: 10 start-page: 1497 issue: 12 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib43 article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature publication-title: IEEE Trans. Veh. Technol. – volume: 62 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib80 article-title: The co-estimation of states for lithium-ion batteries based on segment data publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106787 – volume: 202 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib12 article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2022.123685 – volume: 34 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib153 article-title: A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction publication-title: J. Energy Storage doi: 10.1016/j.est.2020.102118 – volume: 9 issue: 1 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib179 article-title: Novel image-based rapid RUL prediction for Li-Ion batteries using a capsule network and transfer learning publication-title: IEEE Trans. Transp. Electrification doi: 10.1109/TTE.2022.3173918 – volume: 17 start-page: 3109 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib220 article-title: Image, RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-023-02532-z – volume: 160 issue: 2 year: 2012 ident: 10.1016/j.jpowsour.2025.238192_bib136 article-title: Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction publication-title: J. Electrochem. Soc. doi: 10.1149/2.044302jes – volume: 22 start-page: 9552 issue: 23 year: 2022 ident: 10.1016/j.jpowsour.2025.238192_bib248 article-title: XGBoost-Based remaining useful life estimation model with extended kalman particle filter for lithium-ion batteries publication-title: Sensors doi: 10.3390/s22239522 – volume: 6 start-page: 2351 issue: 6 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib4 article-title: ENPOLITE: comparing lithium-ion cells across energy, power, lifetime, and temperature publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00743 – volume: 34 issue: 25 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib8 article-title: Machine learning: an advanced platform for materials development and state prediction in lithium‐ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.202101474 – volume: 7 start-page: 130638 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib206 article-title: Research on degradation modeling and life prediction method of lithium-ion battery in dynamic environment publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929177 – volume: 18 issue: 5 year: 2023 ident: 10.1016/j.jpowsour.2025.238192_bib39 article-title: Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter publication-title: Int. J. Electrochem. Sci. doi: 10.1016/j.ijoes.2023.100122 – volume: 302 issue: 15 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib63 article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion publication-title: Appl. Energy – volume: 36 start-page: 6228 year: 2021 ident: 10.1016/j.jpowsour.2025.238192_bib201 article-title: Li-Ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2020.3033297 – volume: 365 start-page: 235 year: 2017 ident: 10.1016/j.jpowsour.2025.238192_bib95 article-title: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.08.045 – volume: 100 year: 2019 ident: 10.1016/j.jpowsour.2025.238192_bib202 article-title: Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method publication-title: Microelectron. Reliab. |
| SSID | ssj0001170 |
| Score | 2.494882 |
| SecondaryResourceType | review_article |
| Snippet | Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 238192 |
| SubjectTerms | Aging mechanism Data-driven methods Lithium-ion battery Physics-based models State prediction |
| Title | Advancements in battery state prediction methods: A comprehensive review of data-driven approaches and degradation mechanisms |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2025.238192 |
| Volume | 659 |
| WOSCitedRecordID | wos001583657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0378-7753 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001170 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELZK4cAeEK_VsrDIh71VKTQPO-FWoa4AIbSHSlR7ieLE1qZCadUHYg_7V_a3MmM7D6Ba4MAlqqJ4XGc-zUzsmW8I-Z5lvUDywHdYJFPH9wVS3rrcCaLQ98A_KVdoTV_zm5twNIp-tlr_ylqY-zteFOHDQzT9UFXDPVA2ls6-Q92VULgBv0HpcAW1w_VNiu-bU31TupYXHaEZNP90dOkQcgJkuWkPbppHz01tOqaWz-Rvm85eF7RgBqmTzdAmVvzj0vA6Z8gzYVoygSysIM7nlvv8ZbQ7xW5sHXNUUIXxv2A-bWpuMYN9UjmIpbaEue4vUpmlZWLzA2QhqkevcrvffbG0j9odDDfAbBBTw1lWbsGXLOeGNLi0yswShVu7qonbVpp8s_sw7o5hIbiKLk7RrQc85dh-5vuqjMQy2W0cl3JilBMbOWtk3eVBBFZzvX85GF1Vvh779uhzKruCRg366n-0OvxphDTDbbJltUP7BkM7pCWLXfKpwVC5R_420UTzglo0UY0mWqOJWjSd0T59giVqsEQnijawRGssUcASbWCJ1ljaJ8Mfg-H5hWM7djgpfIkvHKkk-E6mOOaoBiKQiSd8lkQQM7tJT_rs1MtCsF3Jqcog1hVKpdiZRPRSNw0hnPpM2sWkkF8IVdwTIuGe4r4ANyMF67HUC5gHY5li7ICclO8xnhpelvj_OjwgUfm6YxtdmqgxBiS9Mvbru2c7JJs11I9IezFbym9kI71f5PPZsYXRI17ipkU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+battery+state+prediction+methods%3A+A+comprehensive+review+of+data-driven+approaches+and+degradation+mechanisms&rft.jtitle=Journal+of+power+sources&rft.au=Zheng%2C+Wentao&rft.au=Wu%2C+Dinglan&rft.au=Yuan%2C+Chenbo&rft.au=Jiang%2C+Huan&rft.date=2025-12-15&rft.issn=0378-7753&rft.volume=659&rft.spage=238192&rft_id=info:doi/10.1016%2Fj.jpowsour.2025.238192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2025_238192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |