An extrapolation accelerated multiscale Newton-MG method for fourth-order compact discretizations of semilinear Poisson equations
An extrapolation accelerated multiscale Newton-multigrid (EMNMG) method is proposed to solve two-dimensional semilinear Poisson equations. The nine-point fourth-order compact schemes are used to approximate the nonlinear Poisson equations. In order to accelerate Newton-MG method for calculating the...
Uloženo v:
| Vydáno v: | Computers & mathematics with applications (1987) Ročník 113; s. 189 - 197 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.05.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0898-1221, 1873-7668 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An extrapolation accelerated multiscale Newton-multigrid (EMNMG) method is proposed to solve two-dimensional semilinear Poisson equations. The nine-point fourth-order compact schemes are used to approximate the nonlinear Poisson equations. In order to accelerate Newton-MG method for calculating the finite difference (FD) solution on the finest grid, a quite good initial guess is constructed from the fourth-order FD solutions at two coarse levels by using Richardson extrapolation and bi-quartic polynomial interpolation, which greatly reduces the number of Newton iterations required. A completed extrapolation technique is adopted to generate a sixth-order extrapolated solution on entire finest grid cheaply. Numerical results are given to show that our proposed EMNMG algorithm can achieve high accuracy and keep less cost simultaneously. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0898-1221 1873-7668 |
| DOI: | 10.1016/j.camwa.2022.03.003 |