Semiparametric Estimation of Distribution Algorithms for Continuous Optimization
Traditional estimation of distribution algorithms (EDAs) often use Gaussian densities to optimize continuous functions, such as the estimation of Gaussian network algorithms (EGNAs) which use Gaussian Bayesian networks (GBNs). However, this assumes a parametric density function, and, in GBNs, linear...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 28; H. 4; S. 1069 - 1083 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2024
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!