K-theoretic wall-crossing formulas and multiple basic hypergeometric series

We study K-theoretic integrals over framed quiver moduli via wall-crossing phenomena. We study the chainsaw quiver varieties, and consider generating functions defined by two types of K-theoretic classes. In particular, we focus on integrals over the handsaw quiver varieties of type A1, and get func...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebra Ročník 677; s. 516 - 584
Hlavní autoři: Ohkawa, R., Shiraishi, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.09.2025
Témata:
ISSN:0021-8693
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study K-theoretic integrals over framed quiver moduli via wall-crossing phenomena. We study the chainsaw quiver varieties, and consider generating functions defined by two types of K-theoretic classes. In particular, we focus on integrals over the handsaw quiver varieties of type A1, and get functional equations for each of them. We also give explicit formula for these partition functions. In particular, we obtain geometric interpretation of transformation formulas for multiple basic hypergeometric series including the Kajihara transformation formula, and the one studied by Langer-Schlosser-Warnaar and Hallnäs-Langman-Noumi-Rosengren.
ISSN:0021-8693
DOI:10.1016/j.jalgebra.2025.03.042