On convergence of "divide the best" global optimization algorithms

In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization Jg. 44; H. 3; S. 303 - 325
1. Verfasser: Sergeyev, Yaroslav D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Gordon and Breach Science Publishers 01.01.1998
Schlagworte:
ISSN:0233-1934, 1029-4945
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a new class of multidimensional global optimization algorithms (called "divide the best" algorithms) is proposed. The class unifies and generalizes the classes of the characteristic methods and the adaptive partition algorithms introduced by Grishagin and Pinter respectively. The new scheme includes also some methods which do not fit either the characteristic or the adaptive partition families. A detailed convergence study is presented. A special attention is paid to cases where sufficient conditions of everywhere dense, local and global convergence are fulfilled only over subregions of the search domain.
ISSN:0233-1934
1029-4945
DOI:10.1080/02331939808844414