Reinforced fuzzy neural networks based on maximum entropy clustering and conjugate gradient method
This paper presents a novel fuzzy clustering-based Takagi–Sugeno–Kang (TSK) neural network for classification tasks, aiming to enhance the accuracy of existing models through a more effective design approach. Unlike previous fuzzy neural networks (FNNs) models, our classifier leverages the maximum e...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 142; s. 109909 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.02.2025
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a novel fuzzy clustering-based Takagi–Sugeno–Kang (TSK) neural network for classification tasks, aiming to enhance the accuracy of existing models through a more effective design approach. Unlike previous fuzzy neural networks (FNNs) models, our classifier leverages the maximum entropy clustering algorithm to establish the first layer structure, while updating the hidden layer weights to address limitations of traditional clustering methods. Additionally, to alleviate computational burden, we employ the conjugate gradient method to adaptively adjust connection parameters of the output layer, employing a softmax function to represent probability distribution. Furthermore, we introduce the cross-entropy error function as the objective function and include an L2 regularization term to mitigate multicollinearity, thereby preventing overfitting and enhancing generalization performance. Experimental evaluations on two-dimensional and other machine learning datasets demonstrate the superiority of our model through comprehensive comparative analyses, highlighting the impact of various parameters on classifier performance. By implementing this new model, we explore the potential of combining fuzzy clustering with TSK neural networks for applications in the fields of pattern recognition and optimization of intelligent systems.
[Display omitted] |
|---|---|
| ISSN: | 0952-1976 |
| DOI: | 10.1016/j.engappai.2024.109909 |