General polynomial roots and their multiplicities in O(N)memory and O(N 2)Time

For a given real or complex polynomial p of degree n we modify the Euclidean algorithm to find a general tridiagonal matrix representation T of the monic version of p and then use the tridiagonal DQR eigenvalue algorithm on T in order to find all roots ofp with their multiplicities in O(n 2 ) operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear & multilinear algebra Jg. 46; H. 4; S. 327 - 359
1. Verfasser: Uhlig, Frank
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Gordon and Breach Science Publishers 01.10.1999
Schlagworte:
ISSN:0308-1087, 1563-5139
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a given real or complex polynomial p of degree n we modify the Euclidean algorithm to find a general tridiagonal matrix representation T of the monic version of p and then use the tridiagonal DQR eigenvalue algorithm on T in order to find all roots ofp with their multiplicities in O(n 2 ) operations and 0(n) storage. We include details of the implementation and comparisons with several, standard and recent, essentially 0(n 3 ) polynomial root finders.
ISSN:0308-1087
1563-5139
DOI:10.1080/03081089908818625