General polynomial roots and their multiplicities in O(N)memory and O(N 2)Time
For a given real or complex polynomial p of degree n we modify the Euclidean algorithm to find a general tridiagonal matrix representation T of the monic version of p and then use the tridiagonal DQR eigenvalue algorithm on T in order to find all roots ofp with their multiplicities in O(n 2 ) operat...
Gespeichert in:
| Veröffentlicht in: | Linear & multilinear algebra Jg. 46; H. 4; S. 327 - 359 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Gordon and Breach Science Publishers
01.10.1999
|
| Schlagworte: | |
| ISSN: | 0308-1087, 1563-5139 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For a given real or complex polynomial p of degree n we modify the Euclidean algorithm to find a general tridiagonal matrix representation T of the monic version of p and then use the tridiagonal DQR eigenvalue algorithm on T in order to find
all roots ofp with their multiplicities in O(n
2
) operations
and 0(n) storage. We include details of the implementation and comparisons with several, standard and recent, essentially 0(n
3
) polynomial root finders. |
|---|---|
| ISSN: | 0308-1087 1563-5139 |
| DOI: | 10.1080/03081089908818625 |