Physics‐Embedded Machine Learning for Fatigue Cumulative Damage Prediction

ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatig...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fatigue & fracture of engineering materials & structures Ročník 48; číslo 10; s. 4352 - 4374
Hlavní autori: Gao, Zhiyuan, Jiang, Xiaomo, Guo, Yifan, Cui, Mingqing, Wang, Shengbo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Wiley Subscription Services, Inc 01.10.2025
Predmet:
ISSN:8756-758X, 1460-2695
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:ABSTRACT Fatigue damage accumulation is critical to the safety and reliability of mechanical structures, yet accurate prediction remains challenging, especially under small‐sample conditions. This study proposes an innovative physics‐embedded machine learning (ML) framework to enhance residual fatigue damage prediction by integrating the Manson–Halford (MH) physical model with data‐driven algorithms. The framework employs a dual‐regressor approach: One regressor embeds the MH model to predict the interaction coefficient, while the other is purely data driven to directly predict residual fatigue damage, with a customized loss function enforcing physical consistency between the two outputs. A compiled dataset of 14 materials demonstrates the framework's superiority over six baseline ML models. Notably, the model retains high accuracy even with 30% fewer training data, showcasing its robustness in data‐scarce scenarios. By harmonizing physical mechanisms with ML, this work provides a generalizable and efficient strategy for fatigue damage prediction. Summary A novel physics‐embedded ML framework for predicting fatigue damage was proposed. A customized loss function was applied to embed physical mechanism. The advantage of the model in small sample prediction was validated.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:8756-758X
1460-2695
DOI:10.1111/ffe.70036