Verified tensor-program optimization via high-level scheduling rewrites

We present a lightweight Coq framework for optimizing tensor kernels written in a pure, functional array language. Optimizations rely on user scheduling using series of verified, semantics-preserving rewrites. Unusually for compilation targeting imperative code with arrays and nested loops, all rewr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of ACM on programming languages Ročník 6; číslo POPL; s. 1 - 28
Hlavní autori: Liu, Amanda, Bernstein, Gilbert Louis, Chlipala, Adam, Ragan-Kelley, Jonathan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.01.2022
ISSN:2475-1421, 2475-1421
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a lightweight Coq framework for optimizing tensor kernels written in a pure, functional array language. Optimizations rely on user scheduling using series of verified, semantics-preserving rewrites. Unusually for compilation targeting imperative code with arrays and nested loops, all rewrites are source-to-source within a purely functional language. Our language comprises a set of core constructs for expressing high-level computation detail and a set of what we call reshape operators, which can be derived from core constructs but trigger low-level decisions about storage patterns and ordering. We demonstrate that not only is this system capable of deriving the optimizations of existing state-of-the-art languages like Halide and generating comparably performant code, it is also able to schedule a family of useful program transformations beyond what is reachable in Halide.
ISSN:2475-1421
2475-1421
DOI:10.1145/3498717