Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste

[Display omitted] •ANN model was used to simulate for prediction and maximization of ACd.•Bayesian Regularization algorithm showed the best performance.•According to the ANN model, the co-digestion might improve the methane yield up to 183% compared to mono substrates. The production of biofuel from...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Fuel (Guildford) Ročník 306; s. 121715
Hlavní autoři: Özarslan, Saliha, Abut, Serdar, Atelge, M.R., Kaya, M., Unalan, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 15.12.2021
Elsevier BV
Témata:
ISSN:0016-2361, 1873-7153
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •ANN model was used to simulate for prediction and maximization of ACd.•Bayesian Regularization algorithm showed the best performance.•According to the ANN model, the co-digestion might improve the methane yield up to 183% compared to mono substrates. The production of biofuel from waste has become an important topic for waste management and reducing its environmental hazard. Tea factory waste is a strong candidate due to its availability and sourceability. This study aimed to reveal the biochemical methane potential (BMP) of tea factory waste (TFW) and spent tea waste (STW). Additionally, the results revealed that both substrates had high biodegradability due to high VS removal. The BMP tests took 49 days under mesophilic conditions with a batch reactor and the cumulative methane yields were 249 ± 3, and 261 ± 8 mL CH4/g VS for TFW and STW, respectively. According to prediction data with the selected ANN model, which was 50 hidden layer sizes, trained with Bayesian Regularization algorithm, the maximum cumulative specific methane yield of the co-digestion was simulated as 468.43 mL CH4/g VS when the ratio of 65 and 35% (w/w by VS) of TFW and STW, respectively. The predicted methane yield for co-substrates was 183% higher than mono substrates. This result revealed that TFW can be a good candidate for biogas production as biofuel for not only its availability and sourceability but also the synergistic effect possible for co-digestion.
AbstractList The production of biofuel from waste has become an important topic for waste management and reducing its environmental hazard. Tea factory waste is a strong candidate due to its availability and sourceability. This study aimed to reveal the biochemical methane potential (BMP) of tea factory waste (TFW) and spent tea waste (STW). Additionally, the results revealed that both substrates had high biodegradability due to high VS removal. The BMP tests took 49 days under mesophilic conditions with a batch reactor and the cumulative methane yields were 249 ± 3, and 261 ± 8 mL CH4/g VS for TFW and STW, respectively. According to prediction data with the selected ANN model, which was 50 hidden layer sizes, trained with Bayesian Regularization algorithm, the maximum cumulative specific methane yield of the co-digestion was simulated as 468.43 mL CH4/g VS when the ratio of 65 and 35% (w/w by VS) of TFW and STW, respectively. The predicted methane yield for co-substrates was 183% higher than mono substrates. This result revealed that TFW can be a good candidate for biogas production as biofuel for not only its availability and sourceability but also the synergistic effect possible for co-digestion.
[Display omitted] •ANN model was used to simulate for prediction and maximization of ACd.•Bayesian Regularization algorithm showed the best performance.•According to the ANN model, the co-digestion might improve the methane yield up to 183% compared to mono substrates. The production of biofuel from waste has become an important topic for waste management and reducing its environmental hazard. Tea factory waste is a strong candidate due to its availability and sourceability. This study aimed to reveal the biochemical methane potential (BMP) of tea factory waste (TFW) and spent tea waste (STW). Additionally, the results revealed that both substrates had high biodegradability due to high VS removal. The BMP tests took 49 days under mesophilic conditions with a batch reactor and the cumulative methane yields were 249 ± 3, and 261 ± 8 mL CH4/g VS for TFW and STW, respectively. According to prediction data with the selected ANN model, which was 50 hidden layer sizes, trained with Bayesian Regularization algorithm, the maximum cumulative specific methane yield of the co-digestion was simulated as 468.43 mL CH4/g VS when the ratio of 65 and 35% (w/w by VS) of TFW and STW, respectively. The predicted methane yield for co-substrates was 183% higher than mono substrates. This result revealed that TFW can be a good candidate for biogas production as biofuel for not only its availability and sourceability but also the synergistic effect possible for co-digestion.
ArticleNumber 121715
Author Kaya, M.
Abut, Serdar
Unalan, S.
Özarslan, Saliha
Atelge, M.R.
Author_xml – sequence: 1
  givenname: Saliha
  surname: Özarslan
  fullname: Özarslan, Saliha
  organization: Energy Division, Department of Mechanical Engineering, Erciyes University, 38039 Kayseri, Turkey
– sequence: 2
  givenname: Serdar
  surname: Abut
  fullname: Abut, Serdar
  organization: Department of Computer Engineering, Siirt, Siirt University, 56100 Siirt, Turkey
– sequence: 3
  givenname: M.R.
  surname: Atelge
  fullname: Atelge, M.R.
  email: rasitatelge@gmail.com
  organization: Department of Mechanical Engineering, Faculty of Engineering, Siirt University, 56100 Siirt, Turkey
– sequence: 4
  givenname: M.
  surname: Kaya
  fullname: Kaya, M.
  organization: Department of Chemical Engineering, Faculty of Engineering, Siirt University, 56100 Siirt, Turkey
– sequence: 5
  givenname: S.
  surname: Unalan
  fullname: Unalan, S.
  organization: Energy Division, Department of Mechanical Engineering, Erciyes University, 38039 Kayseri, Turkey
BookMark eNp9UctuFDEQtFCQ2AR-gJMlzrP4MR47EhcU8ZKCuMDZ8tjtxMuMvdgeVvkufhDvTLhwyKndpaqudtcluogpAkKvKdlTQoe3h71fYNozwuieMiqpeIZ2VEnetSe_QDvSWB3jA32BLks5EEKkEv0O_fmaHEwh3mETHS5hXiZTQ4o4eWxT58IdlLU_QvYpzyZawKdQ77HJNfhgg5lwhCWvpZ5S_okbDx8zuGD_TZqh3psIDU1u2VCf04wrGOyNrSk_4JMp9XF0My7LWGo2DWnycoRYV_JKeomeezMVePVYr9CPjx--33zubr99-nLz_razTKjaKTfyYRRsvFYjp17w1vqhd8oaQn0vCBl6BqNxwkijKL8WUknpZG965jwd-RV6s81ta_9a2h30IS05NkvdDEQvVc9JY6mNZXMqJYPXNtT1hm3_MGlK9DkifdDniPQ5Ir1F1KTsP-kxh9nkh6dF7zYRtK__DpB1sQFaLC5ksFW7FJ6S_wXHeLEs
CitedBy_id crossref_primary_10_1007_s12649_025_03206_2
crossref_primary_10_1016_j_jclepro_2022_134140
crossref_primary_10_1016_j_fuproc_2021_107155
crossref_primary_10_1016_j_jece_2025_117124
crossref_primary_10_1016_j_scitotenv_2024_174225
crossref_primary_10_1080_01430750_2024_2304730
crossref_primary_10_1016_j_biortech_2022_128501
crossref_primary_10_3390_bioengineering10121410
crossref_primary_10_1016_j_biortech_2023_130091
crossref_primary_10_1016_j_ijhydene_2024_06_227
crossref_primary_10_1007_s13399_022_02677_w
crossref_primary_10_1016_j_biortech_2023_128952
crossref_primary_10_3390_pr11072121
crossref_primary_10_1080_07388551_2022_2157701
crossref_primary_10_1080_15567036_2023_2262423
crossref_primary_10_1016_j_renene_2024_121347
crossref_primary_10_3390_fermentation9020120
crossref_primary_10_1016_j_energy_2023_126774
crossref_primary_10_1155_2024_4599371
crossref_primary_10_3390_ma15248709
crossref_primary_10_1016_j_jece_2022_107988
crossref_primary_10_1155_er_4260678
Cites_doi 10.1080/21655979.2019.1673937
10.1371/journal.pone.0178691
10.1080/19397038.2019.1605548
10.21105/joss.00747
10.1007/s11356-019-07190-8
10.1016/J.ENG.2017.03.002
10.1016/j.molliq.2016.04.107
10.1007/s12649-019-00874-9
10.1016/j.fuel.2019.116651
10.1016/j.seppur.2003.12.003
10.1016/j.energy.2018.09.163
10.1016/j.biortech.2016.09.065
10.1016/j.renene.2012.03.027
10.1016/j.biombioe.2011.12.030
10.1088/1742-6596/1240/1/012132
10.1007/s00253-009-2246-7
10.1080/00908319950014849
10.1016/j.rser.2020.109784
10.5897/IJPS2018.4740
10.1007/s12155-019-09980-x
10.1016/j.fuel.2018.05.070
10.1016/S1385-8947(02)00142-0
10.1016/j.biortech.2016.11.083
10.1016/j.ijfoodmicro.2005.04.013
10.1016/j.jclepro.2018.07.225
10.29225/jkts.2018.24.3.79
10.1016/j.fuel.2020.117577
10.1016/j.rser.2014.04.039
10.1016/j.biortech.2019.122660
10.17485/ijst/2016/v9i42/89790
10.1016/j.biortech.2016.04.068
10.1016/j.fuel.2020.117494
10.4028/www.scientific.net/JERA.41.131
10.1007/s12649-018-00546-0
10.1002/er.5343
10.1016/j.fuel.2018.05.051
10.1016/j.enconman.2014.09.057
10.1016/0961-9534(91)90028-B
10.1080/01430750.2018.1562975
10.1080/09593330.2013.819022
10.1016/j.pecs.2010.02.001
10.1016/j.ijhydene.2015.09.156
10.1016/j.renene.2019.12.091
10.1137/1034048
10.1016/j.energy.2006.10.017
10.1016/j.apenergy.2014.08.021
10.1016/j.biortech.2010.06.032
10.1051/e3sconf/202016701010
10.1016/j.biortech.2020.124470
10.1016/j.enpol.2009.04.024
10.1016/j.biortech.2016.03.028
10.1016/S0043-1354(01)00487-0
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2021.121715
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2021_121715
S0016236121015969
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c258t-8db36b52b98b31f53b36f64d8ca01f4500642ebad5a7a813957877d74a42df1b3
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000703785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-2361
IngestDate Wed Aug 13 09:50:24 EDT 2025
Sat Nov 29 07:31:41 EST 2025
Tue Nov 18 22:11:37 EST 2025
Fri Feb 23 02:40:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tea factory waste
ANN simulation
ANN modeling
Biogas
Spent tea waste
Bayesian regularization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c258t-8db36b52b98b31f53b36f64d8ca01f4500642ebad5a7a813957877d74a42df1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2585478430
PQPubID 2045474
ParticipantIDs proquest_journals_2585478430
crossref_citationtrail_10_1016_j_fuel_2021_121715
crossref_primary_10_1016_j_fuel_2021_121715
elsevier_sciencedirect_doi_10_1016_j_fuel_2021_121715
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Djatkov, Effenberger, Martinov (b0185) 2014; 134
Nicoletti, Arcuri, Nicoletti, Bruno (b0010) 2015; 89
Thanarasu, Periyasamy, Devaraj, Periyaraman, Palaniyandi, Subramanian (b0270) 2018; 199
Toftegaard, Brix, Jensen, Glarborg, Jensen (b0005) 2010; 36
Chowdhury, Sarkar, Chowdhury, Bardhan, Mandal, Chowdhury (b0090) 2016; 9
Gozde (b0135) 2020
Yu, Wensel (b0140) 2013
Gonzaga CC. Path-following methods for linear programming. SIAM review 1992;34(2):167-224.
Choong, Norli, Abdullah, Yhaya (b0260) 2016; 209
Singh, Nigam, Murphy (b0025) 2011; 102
Achinas, Achinas, Euverink (b0045) 2017; 3
Ali, Dia, Bilal, Ndongo (b0220) 2018; 13
García-Gimeno, Hervás-Martínez, Rodríguez-Pérez, Zurera-Cosano (b0165) 2005; 105
CAY, UYANIK, OZASIK (b0040) 2004; 38
Basumatary, Saikia, Narzari, Bordoloi, Gogoi, Sut (b0120) 2018; 5
Sarıkoç, Ünalan, Örs (b0235) 2019; 12
Gurten, Ozmak, Yagmur, Aktas (b0105) 2012; 37
Bridgwater (b0020) 2003; 91
Atelge MR, Atabani AE, Banu JR, Krisa D, Kaya M, Eskicioglu C, et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020;270(January):117494-.
Oliwit AT, Cayetano RDA, Kumar G, Kim JS, Kim S-h. Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomas. 2019(December).
Sandhu, Kaushal (b0065) 2019; 1240
Germec, Turhan (b0110) 2018; 231
Şenol (b0150) 2020; 44
Koutroumanidis, Ioannou, Arabatzis (b0160) 2009; 37
Khayum, Anbarasu, Murugan (b0130) 2018; 165
Dahunsi, Oranusi, Owolabi, Efeovbokhan (b0205) 2016; 221
Wang, Zhang (b0170) 2018; 8
Sakiewicz P, Piotrowski K, Ober J, Karwot J. Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification. Renewable and Sustainable Energy Reviews 2020;124:109784.
Şenol H. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology 2020;300(December 2019):122660-.
Gueguim Kana, Oloke, Lateef, Adesiyan (b0210) 2012; 46
Jacob, Banerjee (b0175) 2016; 214
Nations FaAOotU (b0080) 2018
Khayum, Rout, Deepak, Anbarasu, Murugan (b0180) 2020; 11
Baitha, Kaushal (b0055) 2019; 12
Patinvoh, Osadolor, Chandolias, Sárvári Horváth, Taherzadeh (b0305) 2017; 224
Şenol H, Zenk H. Determination of the biogas potential in cities with hazelnut production and examination of potential energy savings in Turkey. Fuel 2020;270(November 2019):117577-.
Demirbas (b0095) 1999; 21
Wikandari, Sanjaya, Millati, Karimi, Taherzadeh (b0310) 2019
Wainaina, Lukitawesa, Kumar Awasthi, Taherzadeh (b0215) 2019; 10
Mata-Alvarez, Dosta, Romero-Güiza, Fonoll, Peces, Astals (b0315) 2014; 36
Mahanty, Zafar, Park (b0155) 2013; 34
Holubar, Zani, Hager, Froschl, Radak, Braun (b0200) 2002; 36
Atelge, Krisa, Kumar, Eskicioglu, Nguyen, Chang (b0035) 2020; 11
Richards, Cummings, White, Jewell (b0225) 1991; 1
Kaushal, Baitha (b0070) 2021; 42
Tjørve KMC, Tjørve E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLOS ONE 2017;12(6):e0178691-e.
Aksay, Ozkaymak, Calhan (b0265) 2018; 8
Weiland (b0050) 2010; 85
Müdürlüğü ÇİG. Çay Sektörü Raporu. 2019.
Mehrez, Djaafri, Semaan, Sapkota, Nehar, Kalloum (b0250) 2021
Lund (b0015) 2007; 32
Bi, Hong, Yang, Yu, Fang, Bai (b0285) 2020; 150
Ghatak, Ghatak (b0195) 2018; 232
Ayas, Esen (b0100) 2016; 41
Kumarihami HPC, Song KJ. Review on Challenges and Opportunities in Global Tea Industry. 한국차학회지 제;24(3).
Djaafri, Kalloum, Soulimani, Khelafi (b0060) 2019; 41
Şenol H, Açıkel, Ü., Demir, S., Oda, V. Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel 2020;263(November 2019):116651-.
Fan, Tang, Wang, Li, Zhang, Tang (b0115) 2016; 220
Muratçobanoğlu, Gökçek, Mert, Zan, Demirel (b0280) 2020; 309
Atelge, Atabani, Abut, Kaya, Eskicioglu, Semaan (b0230) 2021; 322
Lahboubi, Kerrou, Karouach, Bakraoui, Schüch, Schmedemann (b0255) 2020
Wichitsathian B, Yimratanabovorn, J., Wonglertarak, W. Enhancement of performance and biodegradability kinetics of aerobic-anaerobic sludge digestion. E3S Web of Conferences 2020;167.
LeNail (b0300) 2019; 4
Atelge (10.1016/j.fuel.2021.121715_b0035) 2020; 11
Nicoletti (10.1016/j.fuel.2021.121715_b0010) 2015; 89
Khayum (10.1016/j.fuel.2021.121715_b0180) 2020; 11
Ayas (10.1016/j.fuel.2021.121715_b0100) 2016; 41
Wang (10.1016/j.fuel.2021.121715_b0170) 2018; 8
Holubar (10.1016/j.fuel.2021.121715_b0200) 2002; 36
Yu (10.1016/j.fuel.2021.121715_b0140) 2013
Demirbas (10.1016/j.fuel.2021.121715_b0095) 1999; 21
Gozde (10.1016/j.fuel.2021.121715_b0135) 2020
Mahanty (10.1016/j.fuel.2021.121715_b0155) 2013; 34
LeNail (10.1016/j.fuel.2021.121715_b0300) 2019; 4
Lahboubi (10.1016/j.fuel.2021.121715_b0255) 2020
Khayum (10.1016/j.fuel.2021.121715_b0130) 2018; 165
Weiland (10.1016/j.fuel.2021.121715_b0050) 2010; 85
10.1016/j.fuel.2021.121715_b0290
CAY (10.1016/j.fuel.2021.121715_b0040) 2004; 38
10.1016/j.fuel.2021.121715_b0295
Lund (10.1016/j.fuel.2021.121715_b0015) 2007; 32
Nations FaAOotU (10.1016/j.fuel.2021.121715_b0080) 2018
Sarıkoç (10.1016/j.fuel.2021.121715_b0235) 2019; 12
Muratçobanoğlu (10.1016/j.fuel.2021.121715_b0280) 2020; 309
Toftegaard (10.1016/j.fuel.2021.121715_b0005) 2010; 36
Wainaina (10.1016/j.fuel.2021.121715_b0215) 2019; 10
10.1016/j.fuel.2021.121715_b0125
Mehrez (10.1016/j.fuel.2021.121715_b0250) 2021
Jacob (10.1016/j.fuel.2021.121715_b0175) 2016; 214
10.1016/j.fuel.2021.121715_b0245
Djatkov (10.1016/j.fuel.2021.121715_b0185) 2014; 134
Bi (10.1016/j.fuel.2021.121715_b0285) 2020; 150
Chowdhury (10.1016/j.fuel.2021.121715_b0090) 2016; 9
10.1016/j.fuel.2021.121715_b0240
10.1016/j.fuel.2021.121715_b0085
Patinvoh (10.1016/j.fuel.2021.121715_b0305) 2017; 224
Ali (10.1016/j.fuel.2021.121715_b0220) 2018; 13
Gurten (10.1016/j.fuel.2021.121715_b0105) 2012; 37
Sandhu (10.1016/j.fuel.2021.121715_b0065) 2019; 1240
Achinas (10.1016/j.fuel.2021.121715_b0045) 2017; 3
Baitha (10.1016/j.fuel.2021.121715_b0055) 2019; 12
Dahunsi (10.1016/j.fuel.2021.121715_b0205) 2016; 221
Richards (10.1016/j.fuel.2021.121715_b0225) 1991; 1
Mata-Alvarez (10.1016/j.fuel.2021.121715_b0315) 2014; 36
Gueguim Kana (10.1016/j.fuel.2021.121715_b0210) 2012; 46
García-Gimeno (10.1016/j.fuel.2021.121715_b0165) 2005; 105
Aksay (10.1016/j.fuel.2021.121715_b0265) 2018; 8
Fan (10.1016/j.fuel.2021.121715_b0115) 2016; 220
Germec (10.1016/j.fuel.2021.121715_b0110) 2018; 231
Koutroumanidis (10.1016/j.fuel.2021.121715_b0160) 2009; 37
Kaushal (10.1016/j.fuel.2021.121715_b0070) 2021; 42
10.1016/j.fuel.2021.121715_b0075
10.1016/j.fuel.2021.121715_b0030
Ghatak (10.1016/j.fuel.2021.121715_b0195) 2018; 232
Şenol (10.1016/j.fuel.2021.121715_b0150) 2020; 44
10.1016/j.fuel.2021.121715_b0275
Atelge (10.1016/j.fuel.2021.121715_b0230) 2021; 322
Thanarasu (10.1016/j.fuel.2021.121715_b0270) 2018; 199
10.1016/j.fuel.2021.121715_b0190
Djaafri (10.1016/j.fuel.2021.121715_b0060) 2019; 41
Wikandari (10.1016/j.fuel.2021.121715_b0310) 2019
Bridgwater (10.1016/j.fuel.2021.121715_b0020) 2003; 91
10.1016/j.fuel.2021.121715_b0145
Singh (10.1016/j.fuel.2021.121715_b0025) 2011; 102
Choong (10.1016/j.fuel.2021.121715_b0260) 2016; 209
Basumatary (10.1016/j.fuel.2021.121715_b0120) 2018; 5
References_xml – reference: Oliwit AT, Cayetano RDA, Kumar G, Kim JS, Kim S-h. Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomass following soaking aqueous ammonia pretreatment Comparative evaluation of biochemical methane potential of various types of Ugandan agricultural biomas. 2019(December).
– reference: Tjørve KMC, Tjørve E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLOS ONE 2017;12(6):e0178691-e.
– volume: 42
  start-page: 618
  year: 2021
  end-page: 625
  ident: b0070
  article-title: Biogas and methane yield enhancement using graphene oxide nanoparticles and Ca(OH)2 pre-treatment in anaerobic digestion
  publication-title: Int J Ambient Energy
– volume: 41
  start-page: 131
  year: 2019
  end-page: 144
  ident: b0060
  article-title: Bioconversion of Dried Leaves from Algerian Date Palm (Phoenix dactylifera L.) to Biogas by Anaerobic Digestion
  publication-title: Int J Eng Res Afr
– volume: 41
  start-page: 8067
  year: 2016
  end-page: 8072
  ident: b0100
  article-title: Hydrogen production from tea waste
  publication-title: Int J Hydrogen Energy
– volume: 34
  start-page: 2145
  year: 2013
  end-page: 2153
  ident: b0155
  article-title: Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models
  publication-title: Environ Technol
– volume: 209
  start-page: 369
  year: 2016
  end-page: 379
  ident: b0260
  article-title: Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review
  publication-title: Bioresour Technol
– volume: 309
  year: 2020
  ident: b0280
  article-title: Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: Biogas production and microbial community
  publication-title: Bioresour Technol
– volume: 8
  year: 2018
  ident: b0170
  article-title: Effects of land use/cover on surface water pollution based on remote sensing and 3D-EEM fluorescence data in the Jinghe Oasis
  publication-title: Sci Rep
– volume: 220
  start-page: 432
  year: 2016
  end-page: 441
  ident: b0115
  article-title: Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism
  publication-title: J Mol Liq
– volume: 12
  start-page: 240
  year: 2019
  end-page: 247
  ident: b0055
  article-title: Experimental and numerical study of biogas, methane and carbon dioxide produced by pre-treated wheat straw and pre-digested cow dung
  publication-title: Int J Sustainable Eng
– volume: 91
  start-page: 87
  year: 2003
  end-page: 102
  ident: b0020
  article-title: Renewable fuels and chemicals by thermal processing of biomass
  publication-title: Chem Eng J
– volume: 105
  start-page: 317
  year: 2005
  end-page: 332
  ident: b0165
  article-title: Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks
  publication-title: Int J Food Microbiol
– volume: 32
  start-page: 912
  year: 2007
  end-page: 919
  ident: b0015
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
– volume: 12
  start-page: 443
  year: 2019
  end-page: 456
  ident: b0235
  article-title: Experimental Study of Hydrogen Addition on Waste Cooking Oil Biodiesel-Diesel-Butanol Fuel Blends in a DI Diesel Engine
  publication-title: Bioenergy Res
– reference: Kumarihami HPC, Song KJ. Review on Challenges and Opportunities in Global Tea Industry. 한국차학회지 제;24(3).
– reference: Şenol H, Açıkel, Ü., Demir, S., Oda, V. Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel 2020;263(November 2019):116651-.
– volume: 44
  start-page: 6078
  year: 2020
  end-page: 6087
  ident: b0150
  article-title: Identification of new critical points for logistics model in cumulative methane yield curves after co-digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study
  publication-title: Int J Energy Res
– volume: 231
  start-page: 101
  year: 2018
  end-page: 109
  ident: b0110
  article-title: Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling
  publication-title: Fuel
– volume: 221
  start-page: 517
  year: 2016
  end-page: 525
  ident: b0205
  article-title: Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization
  publication-title: Bioresour Technol
– volume: 89
  start-page: 205
  year: 2015
  end-page: 213
  ident: b0010
  article-title: A technical and environmental comparison between hydrogen and some fossil fuels
  publication-title: Energy Convers Manage
– volume: 3
  start-page: 299
  year: 2017
  end-page: 307
  ident: b0045
  article-title: A technological overview of biogas production from biowaste
  publication-title: Engineering
– year: 2018
  ident: b0080
  article-title: FAO
– volume: 4
  start-page: 747
  year: 2019
  ident: b0300
  article-title: Publication-Ready Neural Network Architecture Schematics
  publication-title: J Open Source Software
– volume: 36
  start-page: 581
  year: 2010
  end-page: 625
  ident: b0005
  article-title: Oxy-fuel combustion of solid fuels
  publication-title: Prog Energy Combust Sci
– volume: 21
  start-page: 215
  year: 1999
  end-page: 220
  ident: b0095
  article-title: Evaluation of biomass materials as energy sources: Upgrading of tea waste by briquetting process
  publication-title: Energy Sources
– volume: 322
  start-page: 124470
  year: 2021
  ident: b0230
  article-title: Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies
  publication-title: Bioresour Technol
– reference: Wichitsathian B, Yimratanabovorn, J., Wonglertarak, W. Enhancement of performance and biodegradability kinetics of aerobic-anaerobic sludge digestion. E3S Web of Conferences 2020;167.
– reference: Şenol H. Anaerobic digestion of hazelnut (Corylus colurna) husks after alkaline pretreatment and determination of new important points in Logistic model curves. Bioresource Technology 2020;300(December 2019):122660-.
– year: 2020
  ident: b0255
  article-title: Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree
  publication-title: Biomass Convers Biorefin
– volume: 36
  start-page: 412
  year: 2014
  end-page: 427
  ident: b0315
  article-title: A critical review on anaerobic co-digestion achievements between 2010 and 2013
  publication-title: Renew Sustain Energy Rev
– volume: 1240
  start-page: 012132
  year: 2019
  ident: b0065
  article-title: Anaerobic Digestion of Vegetable, Fruit and Cafeteria Wastes with Cow Dung by Chemical Pretreatment for Biogas Production in Batch Digester
  publication-title: J Phys Conf Ser
– start-page: 1
  year: 2020
  end-page: 7
  ident: b0135
  article-title: Waste to energy: valorization of spent tea waste by anaerobic digestion
  publication-title: Environ Technol
– volume: 224
  start-page: 13
  year: 2017
  end-page: 24
  ident: b0305
  article-title: Innovative pretreatment strategies for biogas production
  publication-title: Bioresour Technol
– volume: 232
  start-page: 178
  year: 2018
  end-page: 189
  ident: b0195
  article-title: Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates
  publication-title: Fuel
– volume: 46
  start-page: 276
  year: 2012
  end-page: 281
  ident: b0210
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm
  publication-title: Renewable Energy
– start-page: 461
  year: 2019
  end-page: 499
  ident: b0310
  article-title: Fermentation Inhibitors in Ethanol and Biogas Processes and Strategies to Counteract Their Effects
  publication-title: Elsevier
– reference: Şenol H, Zenk H. Determination of the biogas potential in cities with hazelnut production and examination of potential energy savings in Turkey. Fuel 2020;270(November 2019):117577-.
– volume: 10
  start-page: 437
  year: 2019
  end-page: 458
  ident: b0215
  article-title: Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review
  publication-title: Bioengineered
– reference: Gonzaga CC. Path-following methods for linear programming. SIAM review 1992;34(2):167-224.
– volume: 13
  start-page: 206
  year: 2018
  end-page: 216
  ident: b0220
  article-title: Theoretical models for prediction of methane production from anaerobic digestion: A critical review
  publication-title: Int J Phys Sci
– volume: 85
  start-page: 849
  year: 2010
  end-page: 860
  ident: b0050
  article-title: Biogas production: current state and perspectives
  publication-title: Appl Microbiol Biotechnol
– volume: 38
  start-page: 273
  year: 2004
  end-page: 280
  ident: b0040
  article-title: Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste
  publication-title: Sep Purif Technol
– reference: Sakiewicz P, Piotrowski K, Ober J, Karwot J. Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification. Renewable and Sustainable Energy Reviews 2020;124:109784.
– volume: 199
  start-page: 651
  year: 2018
  end-page: 658
  ident: b0270
  article-title: Tea powder waste as a potential co-substrate for enhancing the methane production in Anaerobic Digestion of carbon-rich organic waste
  publication-title: J Cleaner Prod
– volume: 5
  start-page: 23413
  year: 2018
  end-page: 23422
  ident: b0120
  article-title: Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial
  publication-title: Mater Today: Proc
– volume: 134
  start-page: 163
  year: 2014
  end-page: 175
  ident: b0185
  article-title: Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems
  publication-title: Appl Energy
– reference: Müdürlüğü ÇİG. Çay Sektörü Raporu. 2019.
– volume: 11
  start-page: 5665
  year: 2020
  end-page: 5678
  ident: b0180
  article-title: Application of Fuzzy Regression Analysis in Predicting the Performance of the Anaerobic Reactor Co-digesting Spent Tea Waste with Cow Manure
  publication-title: Waste Biomass Valorization
– volume: 11
  start-page: 1019
  year: 2020
  end-page: 1040
  ident: b0035
  article-title: Biogas Production from Organic Waste: Recent Progress and Perspectives
  publication-title: Waste Biomass Valorization
– volume: 150
  start-page: 213
  year: 2020
  end-page: 220
  ident: b0285
  article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste
  publication-title: Renewable Energy
– volume: 37
  start-page: 3627
  year: 2009
  end-page: 3634
  ident: b0160
  article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model
  publication-title: Energy Policy
– volume: 214
  start-page: 386
  year: 2016
  end-page: 395
  ident: b0175
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour Technol
– volume: 36
  start-page: 2582
  year: 2002
  end-page: 2588
  ident: b0200
  article-title: Advanced controlling of anaerobic digestion by means of hierarchical neural networks
  publication-title: Water Res
– start-page: s4
  year: 2013
  ident: b0140
  article-title: Mathematical Modeling in Anaerobic Digestion (AD)
  publication-title: J Bioremediation Biodegradation
– volume: 9
  start-page: 1
  year: 2016
  end-page: 6
  ident: b0090
  article-title: Tea waste management: a case study from West Bengal, India
  publication-title: Indian Journal of Science and Technology
– volume: 1
  start-page: 65
  year: 1991
  end-page: 73
  ident: b0225
  article-title: Methods for kinetic analysis of methane fermentation in high solids biomass digesters
  publication-title: Biomass Bioenergy
– volume: 37
  start-page: 73
  year: 2012
  end-page: 81
  ident: b0105
  article-title: Preparation and characterisation of activated carbon from waste tea using K2CO3
  publication-title: Biomass Bioenergy
– reference: Atelge MR, Atabani AE, Banu JR, Krisa D, Kaya M, Eskicioglu C, et al. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 2020;270(January):117494-.
– volume: 165
  start-page: 760
  year: 2018
  end-page: 768
  ident: b0130
  article-title: Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure
  publication-title: Energy
– year: 2021
  ident: b0250
  article-title: Influence of dilute acid, alkali and hydrothermalpretreatments on methane improvement from datepalm waste “Takarboucht” cultivar
  publication-title: Biomass Convers Biorefin
– volume: 8
  start-page: 1346
  year: 2018
  end-page: 1353
  ident: b0265
  article-title: Co-digestion of cattle manure and tea waste for biogas production
  publication-title: International Journal of Renewable Energy Research
– volume: 102
  start-page: 10
  year: 2011
  end-page: 16
  ident: b0025
  article-title: Renewable fuels from algae: an answer to debatable land based fuels
  publication-title: Bioresour Technol
– volume: 10
  start-page: 437
  issue: 1
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0215
  article-title: Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review
  publication-title: Bioengineered
  doi: 10.1080/21655979.2019.1673937
– ident: 10.1016/j.fuel.2021.121715_b0290
  doi: 10.1371/journal.pone.0178691
– volume: 12
  start-page: 240
  issue: 4
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0055
  article-title: Experimental and numerical study of biogas, methane and carbon dioxide produced by pre-treated wheat straw and pre-digested cow dung
  publication-title: Int J Sustainable Eng
  doi: 10.1080/19397038.2019.1605548
– volume: 4
  start-page: 747
  issue: 33
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0300
  article-title: Publication-Ready Neural Network Architecture Schematics
  publication-title: J Open Source Software
  doi: 10.21105/joss.00747
– ident: 10.1016/j.fuel.2021.121715_b0295
  doi: 10.1007/s11356-019-07190-8
– volume: 3
  start-page: 299
  issue: 3
  year: 2017
  ident: 10.1016/j.fuel.2021.121715_b0045
  article-title: A technological overview of biogas production from biowaste
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.03.002
– volume: 220
  start-page: 432
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0115
  article-title: Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.04.107
– volume: 11
  start-page: 5665
  issue: 11
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0180
  article-title: Application of Fuzzy Regression Analysis in Predicting the Performance of the Anaerobic Reactor Co-digesting Spent Tea Waste with Cow Manure
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-019-00874-9
– ident: 10.1016/j.fuel.2021.121715_b0240
  doi: 10.1016/j.fuel.2019.116651
– volume: 38
  start-page: 273
  issue: 3
  year: 2004
  ident: 10.1016/j.fuel.2021.121715_b0040
  article-title: Single and binary component adsorption of copper (II) and cadmium (II) from aqueous solutions using tea-industry waste
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2003.12.003
– volume: 165
  start-page: 760
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0130
  article-title: Biogas potential from spent tea waste: A laboratory scale investigation of co-digestion with cow manure
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.163
– volume: 221
  start-page: 517
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0205
  article-title: Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.09.065
– volume: 46
  start-page: 276
  issue: October
  year: 2012
  ident: 10.1016/j.fuel.2021.121715_b0210
  article-title: Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2012.03.027
– volume: 37
  start-page: 73
  year: 2012
  ident: 10.1016/j.fuel.2021.121715_b0105
  article-title: Preparation and characterisation of activated carbon from waste tea using K2CO3
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.12.030
– volume: 1240
  start-page: 012132
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0065
  article-title: Anaerobic Digestion of Vegetable, Fruit and Cafeteria Wastes with Cow Dung by Chemical Pretreatment for Biogas Production in Batch Digester
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1240/1/012132
– volume: 85
  start-page: 849
  issue: 4
  year: 2010
  ident: 10.1016/j.fuel.2021.121715_b0050
  article-title: Biogas production: current state and perspectives
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2246-7
– volume: 21
  start-page: 215
  issue: 3
  year: 1999
  ident: 10.1016/j.fuel.2021.121715_b0095
  article-title: Evaluation of biomass materials as energy sources: Upgrading of tea waste by briquetting process
  publication-title: Energy Sources
  doi: 10.1080/00908319950014849
– ident: 10.1016/j.fuel.2021.121715_b0190
  doi: 10.1016/j.rser.2020.109784
– volume: 13
  start-page: 206
  issue: 13
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0220
  article-title: Theoretical models for prediction of methane production from anaerobic digestion: A critical review
  publication-title: Int J Phys Sci
  doi: 10.5897/IJPS2018.4740
– volume: 12
  start-page: 443
  issue: 2
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0235
  article-title: Experimental Study of Hydrogen Addition on Waste Cooking Oil Biodiesel-Diesel-Butanol Fuel Blends in a DI Diesel Engine
  publication-title: Bioenergy Res
  doi: 10.1007/s12155-019-09980-x
– volume: 231
  start-page: 101
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0110
  article-title: Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.070
– volume: 91
  start-page: 87
  issue: 2–3
  year: 2003
  ident: 10.1016/j.fuel.2021.121715_b0020
  article-title: Renewable fuels and chemicals by thermal processing of biomass
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(02)00142-0
– volume: 224
  start-page: 13
  year: 2017
  ident: 10.1016/j.fuel.2021.121715_b0305
  article-title: Innovative pretreatment strategies for biogas production
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.11.083
– start-page: s4
  year: 2013
  ident: 10.1016/j.fuel.2021.121715_b0140
  article-title: Mathematical Modeling in Anaerobic Digestion (AD)
  publication-title: J Bioremediation Biodegradation
– volume: 105
  start-page: 317
  issue: 3
  year: 2005
  ident: 10.1016/j.fuel.2021.121715_b0165
  article-title: Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2005.04.013
– volume: 199
  start-page: 651
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0270
  article-title: Tea powder waste as a potential co-substrate for enhancing the methane production in Anaerobic Digestion of carbon-rich organic waste
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.07.225
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0170
  article-title: Effects of land use/cover on surface water pollution based on remote sensing and 3D-EEM fluorescence data in the Jinghe Oasis
  publication-title: Sci Rep
– ident: 10.1016/j.fuel.2021.121715_b0075
  doi: 10.29225/jkts.2018.24.3.79
– ident: 10.1016/j.fuel.2021.121715_b0030
  doi: 10.1016/j.fuel.2020.117577
– volume: 36
  start-page: 412
  year: 2014
  ident: 10.1016/j.fuel.2021.121715_b0315
  article-title: A critical review on anaerobic co-digestion achievements between 2010 and 2013
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.04.039
– ident: 10.1016/j.fuel.2021.121715_b0145
  doi: 10.1016/j.biortech.2019.122660
– volume: 9
  start-page: 1
  issue: 42
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0090
  article-title: Tea waste management: a case study from West Bengal, India
  publication-title: Indian Journal of Science and Technology
  doi: 10.17485/ijst/2016/v9i42/89790
– start-page: 461
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0310
  article-title: Fermentation Inhibitors in Ethanol and Biogas Processes and Strategies to Counteract Their Effects
  publication-title: Elsevier
– volume: 5
  start-page: 23413
  issue: 11
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0120
  article-title: Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial
  publication-title: Mater Today: Proc
– volume: 214
  start-page: 386
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0175
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.04.068
– ident: 10.1016/j.fuel.2021.121715_b0125
  doi: 10.1016/j.fuel.2020.117494
– year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0255
  article-title: Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree
  publication-title: Biomass Convers Biorefin
– volume: 41
  start-page: 131
  year: 2019
  ident: 10.1016/j.fuel.2021.121715_b0060
  article-title: Bioconversion of Dried Leaves from Algerian Date Palm (Phoenix dactylifera L.) to Biogas by Anaerobic Digestion
  publication-title: Int J Eng Res Afr
  doi: 10.4028/www.scientific.net/JERA.41.131
– volume: 11
  start-page: 1019
  issue: 3
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0035
  article-title: Biogas Production from Organic Waste: Recent Progress and Perspectives
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-018-00546-0
– volume: 44
  start-page: 6078
  issue: 7
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0150
  article-title: Identification of new critical points for logistics model in cumulative methane yield curves after co-digestion of apple pulp and chicken manure with sulphuric acid pretreatment and a new modelling study
  publication-title: Int J Energy Res
  doi: 10.1002/er.5343
– volume: 232
  start-page: 178
  issue: March
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0195
  article-title: Artificial neural network model to predict behavior of biogas production curve from mixed lignocellulosic co-substrates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.05.051
– volume: 89
  start-page: 205
  year: 2015
  ident: 10.1016/j.fuel.2021.121715_b0010
  article-title: A technical and environmental comparison between hydrogen and some fossil fuels
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.09.057
– volume: 1
  start-page: 65
  issue: 2
  year: 1991
  ident: 10.1016/j.fuel.2021.121715_b0225
  article-title: Methods for kinetic analysis of methane fermentation in high solids biomass digesters
  publication-title: Biomass Bioenergy
  doi: 10.1016/0961-9534(91)90028-B
– volume: 42
  start-page: 618
  issue: 6
  year: 2021
  ident: 10.1016/j.fuel.2021.121715_b0070
  article-title: Biogas and methane yield enhancement using graphene oxide nanoparticles and Ca(OH)2 pre-treatment in anaerobic digestion
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2018.1562975
– volume: 34
  start-page: 2145
  issue: 13–14
  year: 2013
  ident: 10.1016/j.fuel.2021.121715_b0155
  article-title: Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models
  publication-title: Environ Technol
  doi: 10.1080/09593330.2013.819022
– volume: 309
  issue: April
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0280
  article-title: Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: Biogas production and microbial community
  publication-title: Bioresour Technol
– volume: 36
  start-page: 581
  issue: 5
  year: 2010
  ident: 10.1016/j.fuel.2021.121715_b0005
  article-title: Oxy-fuel combustion of solid fuels
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2010.02.001
– volume: 41
  start-page: 8067
  issue: 19
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0100
  article-title: Hydrogen production from tea waste
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.09.156
– volume: 150
  start-page: 213
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0285
  article-title: Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.12.091
– volume: 8
  start-page: 1346
  issue: 3
  year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0265
  article-title: Co-digestion of cattle manure and tea waste for biogas production
  publication-title: International Journal of Renewable Energy Research
– ident: 10.1016/j.fuel.2021.121715_b0245
  doi: 10.1137/1034048
– volume: 32
  start-page: 912
  issue: 6
  year: 2007
  ident: 10.1016/j.fuel.2021.121715_b0015
  article-title: Renewable energy strategies for sustainable development
  publication-title: Energy
  doi: 10.1016/j.energy.2006.10.017
– volume: 134
  start-page: 163
  year: 2014
  ident: 10.1016/j.fuel.2021.121715_b0185
  article-title: Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.021
– year: 2021
  ident: 10.1016/j.fuel.2021.121715_b0250
  article-title: Influence of dilute acid, alkali and hydrothermalpretreatments on methane improvement from datepalm waste “Takarboucht” cultivar
  publication-title: Biomass Convers Biorefin
– volume: 102
  start-page: 10
  issue: 1
  year: 2011
  ident: 10.1016/j.fuel.2021.121715_b0025
  article-title: Renewable fuels from algae: an answer to debatable land based fuels
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.06.032
– ident: 10.1016/j.fuel.2021.121715_b0275
  doi: 10.1051/e3sconf/202016701010
– ident: 10.1016/j.fuel.2021.121715_b0085
– volume: 322
  start-page: 124470
  year: 2021
  ident: 10.1016/j.fuel.2021.121715_b0230
  article-title: Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.124470
– start-page: 1
  year: 2020
  ident: 10.1016/j.fuel.2021.121715_b0135
  article-title: Waste to energy: valorization of spent tea waste by anaerobic digestion
  publication-title: Environ Technol
– volume: 37
  start-page: 3627
  issue: 9
  year: 2009
  ident: 10.1016/j.fuel.2021.121715_b0160
  article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.024
– volume: 209
  start-page: 369
  year: 2016
  ident: 10.1016/j.fuel.2021.121715_b0260
  article-title: Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.03.028
– year: 2018
  ident: 10.1016/j.fuel.2021.121715_b0080
– volume: 36
  start-page: 2582
  issue: 10
  year: 2002
  ident: 10.1016/j.fuel.2021.121715_b0200
  article-title: Advanced controlling of anaerobic digestion by means of hierarchical neural networks
  publication-title: Water Res
  doi: 10.1016/S0043-1354(01)00487-0
SSID ssj0007854
Score 2.4793217
Snippet [Display omitted] •ANN model was used to simulate for prediction and maximization of ACd.•Bayesian Regularization algorithm showed the best...
The production of biofuel from waste has become an important topic for waste management and reducing its environmental hazard. Tea factory waste is a strong...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121715
SubjectTerms Algorithms
ANN modeling
ANN simulation
Artificial neural networks
Availability
Batch reactors
Bayesian analysis
Bayesian regularization algorithm
Best management practices
Biodegradability
Biodegradation
Biodiesel fuels
Biofuels
Biogas
Computer simulation
Digestion
Environmental hazards
Environmental management
Industrial wastes
Methane
Neural networks
Regularization
Spent tea waste
Substrates
Synergistic effect
Tea
Tea factory waste
Waste management
Title Modeling and simulation of co-digestion performance with artificial neural network for prediction of methane production from tea factory waste with co-substrate of spent tea waste
URI https://dx.doi.org/10.1016/j.fuel.2021.121715
https://www.proquest.com/docview/2585478430
Volume 306
WOSCitedRecordID wos000703785900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1UJAP3Cqv8nBi57hCrYBDhVCR9hY5iSNahTTa7JaWv8Xf4Ecx40cSFrWiBy67m2g8yu58Ox7b38wQ8jaTQSV4ETBw_pzxsK6YKqKS6SQss6zWMfgH02xCnJzI5TL7NJv98rkwl41oW3l1lXX_1dRwD4yNqbN3MPegFG7AZzA6vILZ4fWfDI_dzRqfetiffXP9uSx_nFXmQAmvu0nKgM1wWxneEG6hY5VL82Y44oaK2K3wSMdrwsbTqsUkK1Mw1vAVTaKKVq6Fz_XhdwUI8tx21oOHMpVwcXjfIQUBhY3QNEI-3ujG7F1gv27LvB_2KvBUP0t_wFq8cfu2sIr4Okwsi2JjphTwf5UaSMeLtW5c__j55_kwwahrZe9N9z2iEDkkNvPT-_IwZVg6ZurL42DqjUNYb9khf00Uds_ifF7Dl5qj-vko_GdV7q3ZcuAwenrceY46ctSRWx33yG4kkgx87O7iw9Hy4xAZCJnYquDuyV0Sl-Ubbj_JTYHSVshg4qDTx-SRW8DQhQXeEzLT7VPycFLW8hn56SFIAYJ0hCC9qOkUgnQCQYo4oSMEqYUgdRCkIEdHCKImB0E6QpAiBCmgijoIUoMuq3oKQRxuIGiEjdBz8uX46PTde-aag7AySuSayaqI0yKJikwWcVgnMVzWKa9kqYKw5gnG2pEuVJUooWSIx9FSCPBLikdVHRbxC7LTXrR6j1AB0YKOylJmouJlUCsuVArBIweVsN7n-yT0lshLVzkfG7g0-c0Y2CeHw5jO1o25VTrxBs5d5Gsj2hzweuu4A4-G3LmgPoefB4v08Th4eaeHeEUejP-zA7KzXm30a3K_vFyf9as3Dsu_AZh84GM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+simulation+of+co-digestion+performance+with+artificial+neural+network+for+prediction+of+methane+production+from+tea+factory+waste+with+co-substrate+of+spent+tea+waste&rft.jtitle=Fuel+%28Guildford%29&rft.au=%C3%96zarslan%2C+Saliha&rft.au=Abut%2C+Serdar&rft.au=Atelge%2C+M.R.&rft.au=Kaya%2C+M.&rft.date=2021-12-15&rft.issn=0016-2361&rft.volume=306&rft.spage=121715&rft_id=info:doi/10.1016%2Fj.fuel.2021.121715&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2021_121715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon