Guest Editorial Dynamical Neuro-AI Learning Systems: Devices, Circuits, Architecture and Algorithms
This Special Issue of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on dynamical neuro-artificial intelligence (AI) learning systems that bridge the gap between devices, circuits, architectures, and algorithms...
Uloženo v:
| Vydáno v: | IEEE journal on emerging and selected topics in circuits and systems Ročník 13; číslo 4; s. 873 - 876 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2156-3357, 2156-3365 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This Special Issue of IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on dynamical neuro-artificial intelligence (AI) learning systems that bridge the gap between devices, circuits, architectures, and algorithms. The growing demand for AI has spurred the development of systems that: 1) co-localize computation and memory; 2) enhance circuits and devices optimized for operations prevalent in deep learning; and 3) implement lightweight and compressed machine learning models thereby achieving greater accuracy with less resources. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Editorial-2 ObjectType-Commentary-1 |
| ISSN: | 2156-3357 2156-3365 |
| DOI: | 10.1109/JETCAS.2023.3343932 |