Enhancing neural combinatorial optimization by progressive training paradigm

Neural Combinatorial Optimization (NCO) methods have garnered considerable attention, due to their effectiveness in automatic algorithm design for solving combinatorial optimization problems. Current constructive NCO methods predominantly employ a one-stage training paradigm using either reinforceme...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 659; p. 131707
Main Authors: Cao, Zhi, Wu, Yaoxin, Hou, Yaqing, Ge, Hongwei
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2026
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Neural Combinatorial Optimization (NCO) methods have garnered considerable attention, due to their effectiveness in automatic algorithm design for solving combinatorial optimization problems. Current constructive NCO methods predominantly employ a one-stage training paradigm using either reinforcement learning (RL) or supervised learning (SL). The one-stage training inevitably entails the computation-intensive labeling (i.e., solving optimal solutions) in SL or less-informative sparse rewards in RL. In this work, we propose a progressive training paradigm that pre-trains a neural network on small-scale instances using SL and then fine-tunes it using RL. In the former stage, the optimal solutions as labels effectively guide the neural network training, thereby bypassing the sparse reward issue. In the latter, the neural network is trained using RL to solve large-scale problems, avoiding the labels of optimal solutions that are hard to obtain. Moreover, we propose a decomposition-based approach that enables RL training with larger problem scales, alleviating the issue of insufficient memory induced by the heavy neural network. The proposed paradigm advances existing NCO models to obtain near-optimal solutions for the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) with up to 10,000 nodes. Additionally, it enhances the generalization performance across instances of different sizes and distributions, as well as real-world TSPLib and CVRPLib instances.
AbstractList Neural Combinatorial Optimization (NCO) methods have garnered considerable attention, due to their effectiveness in automatic algorithm design for solving combinatorial optimization problems. Current constructive NCO methods predominantly employ a one-stage training paradigm using either reinforcement learning (RL) or supervised learning (SL). The one-stage training inevitably entails the computation-intensive labeling (i.e., solving optimal solutions) in SL or less-informative sparse rewards in RL. In this work, we propose a progressive training paradigm that pre-trains a neural network on small-scale instances using SL and then fine-tunes it using RL. In the former stage, the optimal solutions as labels effectively guide the neural network training, thereby bypassing the sparse reward issue. In the latter, the neural network is trained using RL to solve large-scale problems, avoiding the labels of optimal solutions that are hard to obtain. Moreover, we propose a decomposition-based approach that enables RL training with larger problem scales, alleviating the issue of insufficient memory induced by the heavy neural network. The proposed paradigm advances existing NCO models to obtain near-optimal solutions for the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) with up to 10,000 nodes. Additionally, it enhances the generalization performance across instances of different sizes and distributions, as well as real-world TSPLib and CVRPLib instances.
ArticleNumber 131707
Author Ge, Hongwei
Wu, Yaoxin
Hou, Yaqing
Cao, Zhi
Author_xml – sequence: 1
  givenname: Zhi
  surname: Cao
  fullname: Cao, Zhi
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China
– sequence: 2
  givenname: Yaoxin
  surname: Wu
  fullname: Wu, Yaoxin
  organization: Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
– sequence: 3
  givenname: Yaqing
  surname: Hou
  fullname: Hou, Yaqing
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China
– sequence: 4
  givenname: Hongwei
  orcidid: 0000-0002-8937-1515
  surname: Ge
  fullname: Ge, Hongwei
  email: hwge@dlut.edu.cn
  organization: School of Computer Science and Technology, Dalian University of Technology, Dalian 116023, China
BookMark eNp9kMtOwzAURL0oEm3hD1jkBxJs52GyQUJVeUiV2MDaurZvyq0aO7JDpfL1pAprVqNZnNHorNjCB4-M3QleCC6a-0Ph8duGvpBc1oUoheJqwZa8lXUuSyGv2SqlA-dCCdku2W7rv8Bb8vts4iIcs4k15GEMkaYWhpF6-oGRgs_MORti2EdMiU6YjRHIX8gBIjja9zfsqoNjwtu_XLPP5-3H5jXfvb-8bZ52uZW1GnMEA6Z-sFKKtlENdF3pOmWsstY5CZXCumrAtKYBW6HsuJLKOagFNlZxx8s1q-ZdG0NKETs9ROohnrXg-mJBH_RsQV8s6NnChD3OGE7fToRRJ0voLTqKaEftAv0_8AsAm27S
Cites_doi 10.1016/j.ejor.2009.10.002
10.1145/3694690
10.1023/A:1022672621406
10.1038/nmeth.2926
10.1109/TII.2022.3189725
10.1109/TNNLS.2021.3068828
10.1109/TEPM.2003.813002
10.1109/TIP.2024.3472494
10.1007/s11063-023-11364-4
10.1287/mnsc.6.1.80
10.1109/TITS.2023.3253552
10.1016/j.cor.2021.105643
10.1016/j.bulsci.2024.103482
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.131707
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_131707
S0925231225023793
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
~HD
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
ID FETCH-LOGICAL-c257t-eabab58c2219676aff3df7bc7ccdd2a47e546ab9b6ac4e2f0727dda51e6c70d03
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001602742100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Thu Nov 27 01:05:30 EST 2025
Wed Dec 10 14:37:48 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Attention model
Neural combinatorial optimization
Vehicle routing problem
Reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-eabab58c2219676aff3df7bc7ccdd2a47e546ab9b6ac4e2f0727dda51e6c70d03
ORCID 0000-0002-8937-1515
ParticipantIDs crossref_primary_10_1016_j_neucom_2025_131707
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_131707
PublicationCentury 2000
PublicationDate 2026-01-01
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xin, Song, Cao, Zhang (bib0185) 2021; vol. 35
Radhika, Chandrasekar, Vijayakumar (bib0035) 2024; 195
Williams (bib0270) 1992; 8
Wu, Song, Cao, Zhang, Lim (bib0070) 2021; 33
Drakulic, Michel, Mai, Sors, Andreoli (bib0110) 2023; 36
Joshi, Laurent, Bresson (bib0050) 2019
Kumar, Luo (bib0250) 2003; 26
Jiang, Wu, Li, Cao, Zhang (bib0290) 2025
Choo, Kwon, Kim, Jae, Hottung, Tierney, Gwon (bib0265) 2022; 35
Bello, Pham, Le, Norouzi, Bengio (bib0140) 2016
Dantzig, Ramser (bib0240) 1959; 6
Geisler, Sommer, Schuchardt, Bojchevski, Günnemann (bib0160) 2022
Luo, Lin, Wu, Wang, Xialiang, Yuan, Zhang (bib0285) 2025
Ma, Cao, Chee (bib0120) 2023; vol. 36
Helsgaun (bib0025) 2017; 12
Xin, Song, Cao, Zhang (bib0115) 2021; vol. 34
Yao, Lin, Wang, Zhang, Wang (bib0205) 2024
Jin, Ding, Pan, He, Zhao, Qin, Song, Bian (bib0195) 2023; vol. 37
Song, Chen, Li, Cao (bib0105) 2023; 19
Kool, Hoof, Welling (bib0055) 2019
Radhika, Chandrasekar, Vijayakumar, Zhu (bib0030) 2023; 55
Wu, Zhou, Xia, Zhang, Cao, Zhang (bib0255) 2023; 24
Prates, Avelar, Lemos, Lamb, Vardi (bib0075) 2019; vol. 33
Zhou, Wu, Song, Cao, Zhang (bib0090) 2023
Kwon, Choo, Kim, Yoon, Gwon, Min (bib0060) 2020; 33
Bi, Ma, Zhou, Song, Cao, Wu, Zhang (bib0100) 2024; vol. 37
Kwon, Choo, Yoon, Park, Park, Gwon (bib0180) 2021; 34
Wu, Wang, Wen, Xiao, Wu, Wu, Yu, Maskell, Zhou (bib0235) 2024
Tang, Ge, Sun, Hou, Zhao (bib0040) 2024
Konstantakopoulos, Gayialis, Kechagias (bib0245) 2022; 22
Goh, Cao, Ma, Dong, Dupty, Lee (bib0095) 2024
Zhang, Zhang, Wang, Zhu (bib0145) 2022; vol. 36
D. Applegate, R. Bixby, V. Chvatal, W. Cook, Concorde TSP solver (2006).
Luo, Lin, Liu, Zhang, Wang (bib0080) 2023; vol. 36
Mandal, Kumar Deva Sarma (bib0260) 2022
Vinyals, Fortunato, Jaitly (bib0045) 2015; vol. 28
Hottung, Kwon, Tierney (bib0065) 2022
Ye, Wang, Liang, Cao, Li, Li (bib0215) 2024; vol. 38
Sanokowski, Hochreiter, Lehner (bib0155) 2024
Min, Bai, Gomes (bib0130) 2023; 36
Sun, Yang (bib0150) 2023; vol. 36
Gao, Shang, Xue, Li, Qian (bib0230) 2024
Brophy, Voigt (bib0010) 2014; 11
Fu, Qiu, Zha (bib0125) 2022
Grinsztajn, Furelos-Blanco, Surana, Bonnet, Barrett (bib0200) 2023; 36
Nazari, Oroojlooy, Takáč, Snyder (bib0135) 2018
Garaix, Artigues, Feillet, Josselin (bib0005) 2010
Lisicki, Afkanpour, Taylor (bib0085) 2020
Kim, Park (bib0190) 2021; 34
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0175) 2017
Vidal (bib0280) 2022; 140
Hou, Yang, Su, Wang, Deng (bib0210) 2023
Zhang, Song, Cao, Zhang, Tan, Chi (bib0015) 2020; 33
F. Didier, L. Perron, S. Mohajeri, S.A. Gay, T. Cuvelier, V. Furnon, Or-tools’ vehicle routing solver: a generic constraint-programming solver with heuristic search for routing problems (2023).
L. Xin, W. Song, Z. Cao, J. Zhang, Generative adversarial training for neural combinatorial optimization models (2023).
Zong, Wang, Wang, Zheng, Li (bib0225) 2022
Khalil, Dai, Zhang, Dilkina, Song (bib0170) 2017; 30
Pan, Jin, Ding, Feng, Zhao, Song, Bian (bib0220) 2023; vol. 37
Khalil (10.1016/j.neucom.2025.131707_bib0170) 2017; 30
Vaswani (10.1016/j.neucom.2025.131707_bib0175) 2017
Jiang (10.1016/j.neucom.2025.131707_bib0290) 2025
Zong (10.1016/j.neucom.2025.131707_bib0225) 2022
Gao (10.1016/j.neucom.2025.131707_bib0230) 2024
Radhika (10.1016/j.neucom.2025.131707_bib0035) 2024; 195
Ma (10.1016/j.neucom.2025.131707_bib0120) 2023; vol. 36
Kwon (10.1016/j.neucom.2025.131707_bib0060) 2020; 33
Radhika (10.1016/j.neucom.2025.131707_bib0030) 2023; 55
Wu (10.1016/j.neucom.2025.131707_bib0070) 2021; 33
Geisler (10.1016/j.neucom.2025.131707_bib0160) 2022
Xin (10.1016/j.neucom.2025.131707_bib0115) 2021; vol. 34
Song (10.1016/j.neucom.2025.131707_bib0105) 2023; 19
Sun (10.1016/j.neucom.2025.131707_bib0150) 2023; vol. 36
Tang (10.1016/j.neucom.2025.131707_bib0040) 2024
Garaix (10.1016/j.neucom.2025.131707_bib0005) 2010
Kim (10.1016/j.neucom.2025.131707_bib0190) 2021; 34
Min (10.1016/j.neucom.2025.131707_bib0130) 2023; 36
10.1016/j.neucom.2025.131707_bib0020
Bello (10.1016/j.neucom.2025.131707_bib0140) 2016
Grinsztajn (10.1016/j.neucom.2025.131707_bib0200) 2023; 36
Sanokowski (10.1016/j.neucom.2025.131707_bib0155) 2024
Luo (10.1016/j.neucom.2025.131707_bib0285) 2025
Wu (10.1016/j.neucom.2025.131707_bib0255) 2023; 24
Vinyals (10.1016/j.neucom.2025.131707_bib0045) 2015; vol. 28
Zhang (10.1016/j.neucom.2025.131707_bib0015) 2020; 33
Luo (10.1016/j.neucom.2025.131707_bib0080) 2023; vol. 36
Helsgaun (10.1016/j.neucom.2025.131707_bib0025) 2017; 12
Wu (10.1016/j.neucom.2025.131707_bib0235)
Kool (10.1016/j.neucom.2025.131707_bib0055) 2019
Choo (10.1016/j.neucom.2025.131707_bib0265) 2022; 35
Ye (10.1016/j.neucom.2025.131707_bib0215) 2024; vol. 38
Dantzig (10.1016/j.neucom.2025.131707_bib0240) 1959; 6
10.1016/j.neucom.2025.131707_bib0275
Goh (10.1016/j.neucom.2025.131707_bib0095) 2024
Yao (10.1016/j.neucom.2025.131707_bib0205) 2024
Nazari (10.1016/j.neucom.2025.131707_bib0135) 2018
Prates (10.1016/j.neucom.2025.131707_bib0075) 2019; vol. 33
Zhang (10.1016/j.neucom.2025.131707_bib0145) 2022; vol. 36
Joshi (10.1016/j.neucom.2025.131707_bib0050)
Konstantakopoulos (10.1016/j.neucom.2025.131707_bib0245) 2022; 22
Kwon (10.1016/j.neucom.2025.131707_bib0180) 2021; 34
Jin (10.1016/j.neucom.2025.131707_bib0195) 2023; vol. 37
Kumar (10.1016/j.neucom.2025.131707_bib0250) 2003; 26
Brophy (10.1016/j.neucom.2025.131707_bib0010) 2014; 11
Lisicki (10.1016/j.neucom.2025.131707_bib0085) 2020
Bi (10.1016/j.neucom.2025.131707_bib0100) 2024; vol. 37
Hottung (10.1016/j.neucom.2025.131707_bib0065) 2022
10.1016/j.neucom.2025.131707_bib0165
Mandal (10.1016/j.neucom.2025.131707_bib0260) 2022
Xin (10.1016/j.neucom.2025.131707_bib0185) 2021; vol. 35
Hou (10.1016/j.neucom.2025.131707_bib0210) 2023
Drakulic (10.1016/j.neucom.2025.131707_bib0110) 2023; 36
Pan (10.1016/j.neucom.2025.131707_bib0220) 2023; vol. 37
Williams (10.1016/j.neucom.2025.131707_bib0270) 1992; 8
Vidal (10.1016/j.neucom.2025.131707_bib0280) 2022; 140
Zhou (10.1016/j.neucom.2025.131707_bib0090) 2023
Fu (10.1016/j.neucom.2025.131707_bib0125) 2022
References_xml – volume: vol. 28
  year: 2015
  ident: bib0045
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 6914
  year: 2024
  end-page: 6922
  ident: bib0230
  article-title: Towards generalizable neural solvers for vehicle routing problems via ensemble with transferrable local policy
  publication-title: Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24
– year: 2019
  ident: bib0050
  article-title: An efficient graph convolutional network technique for the travelling salesman problem
– volume: 30
  year: 2017
  ident: bib0170
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 21188
  year: 2020
  end-page: 21198
  ident: bib0060
  article-title: Pomo: policy optimization with multiple optima for reinforcement learning
  publication-title: Neural Inf. Process. Syst.
– year: 2024
  ident: bib0040
  article-title: A virtual-sensor construction network based on physical imaging for image super-resolution
  publication-title: IEEE Trans. Image Process.
– year: 2019
  ident: bib0055
  article-title: Attention, learn to solve routing problems!
  publication-title: International Conference on Learning Representations
– volume: vol. 35
  start-page: 12042
  year: 2021
  end-page: 12049
  ident: bib0185
  article-title: Multi-decoder attention model with embedding glimpse for solving vehicle routing problems
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2022
  ident: bib0160
  article-title: Generalization of neural combinatorial solvers through the lens of adversarial robustness
  publication-title: ICLR
– volume: vol. 37
  start-page: 93479
  year: 2024
  end-page: 93509
  ident: bib0100
  article-title: Learning to handle complex constraints for vehicle routing problems
  publication-title: Advances in Neural Information Processing Systems
– volume: 55
  start-page: 11055
  year: 2023
  end-page: 11072
  ident: bib0030
  article-title: Analysis of Markovian jump stochastic Cohen–Grossberg BAM neural networks with time delays for exponential input-to-state stability
  publication-title: Neural Process. Lett.
– volume: vol. 34
  start-page: 7472
  year: 2021
  end-page: 7483
  ident: bib0115
  article-title: NeuroLKH: combining deep learning model with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem
  publication-title: NEURIPS
– volume: 195
  year: 2024
  ident: bib0035
  article-title: Finite-time h
  publication-title: Bull. Sci. Math.
– year: 2022
  ident: bib0065
  article-title: Efficient active search for combinatorial optimization problems
  publication-title: International Conference on Learning Representations
– reference: L. Xin, W. Song, Z. Cao, J. Zhang, Generative adversarial training for neural combinatorial optimization models (2023).
– year: 2020
  ident: bib0085
  article-title: Evaluating curriculum learning strategies in neural combinatorial optimization
  publication-title: NEURIPS 2020 Workshop on Learning Meets Combinatorial Algorithms
– volume: vol. 36
  start-page: 49555
  year: 2023
  end-page: 49578
  ident: bib0120
  article-title: Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt
  publication-title: NEURIPS
– volume: 33
  start-page: 1621
  year: 2020
  end-page: 1632
  ident: bib0015
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2025
  ident: bib0285
  article-title: Boosting neural combinatorial optimization for large-scale vehicle routing problems
  publication-title: The Thirteenth International Conference on Learning Representations
– volume: vol. 36
  start-page: 9136
  year: 2022
  end-page: 9144
  ident: bib0145
  article-title: Learning to solve travelling salesman problem with hardness-adaptive curriculum
  publication-title: AAAI
– volume: 35
  start-page: 8760
  year: 2022
  end-page: 8772
  ident: bib0265
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: bib0210
  article-title: Generalize learned heuristics to solve large-scale vehicle routing problems in real-time
  publication-title: The Eleventh International Conference on Learning Representations
– volume: 26
  start-page: 14
  year: 2003
  end-page: 21
  ident: bib0250
  article-title: Optimizing the operation sequence of a chip placement machine using TSP model
  publication-title: IEEE Trans. Electron. Packag. Manuf.
– start-page: 42769
  year: 2023
  end-page: 42789
  ident: bib0090
  article-title: Towards omni-generalizable neural methods for vehicle routing problems
  publication-title: International Conference on Machine Learning
– start-page: 62
  year: 2010
  end-page: 75
  ident: bib0005
  article-title: Vehicle routing problems with alternative paths: an application to on-demand transportation
  publication-title: Eur. J. Oper. Res.
– start-page: 43346
  year: 2024
  end-page: 43367
  ident: bib0155
  article-title: A diffusion model framework for unsupervised neural combinatorial optimization
  publication-title: International Conference on Machine Learning
– volume: 36
  start-page: 48485
  year: 2023
  end-page: 48509
  ident: bib0200
  article-title: Winner takes it all: training performant RL populations for combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 33
  start-page: 4731
  year: 2019
  end-page: 4738
  ident: bib0075
  article-title: Learning to solve NP-complete problems: a graph neural network for decision TSP
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: vol. 37
  start-page: 9345
  year: 2023
  end-page: 9353
  ident: bib0220
  article-title: H-tsp: Hierarchically solving the large-scale traveling salesman problem
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 19
  start-page: 1600
  year: 2023
  end-page: 1610
  ident: bib0105
  article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 9861
  year: 2018
  end-page: 9871
  ident: bib0135
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
– volume: 36
  start-page: 47264
  year: 2023
  end-page: 47278
  ident: bib0130
  article-title: Unsupervised learning for solving the travelling salesman problem
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: D. Applegate, R. Bixby, V. Chvatal, W. Cook, Concorde TSP solver (2006).
– start-page: 4648
  year: 2022
  end-page: 4658
  ident: bib0225
  article-title: Rbg: hierarchically solving large-scale routing problems in logistic systems via reinforcement learning
  publication-title: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– start-page: 1
  year: 2022
  end-page: 6
  ident: bib0260
  article-title: Novel applications of ant colony optimization with the traveling salesman problem in DNA sequence optimization
  publication-title: 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (ISSSC)
– volume: 6
  start-page: 80
  year: 1959
  end-page: 91
  ident: bib0240
  article-title: The truck dispatching problem
  publication-title: Manag. Sci.
– volume: 8
  start-page: 229
  year: 1992
  end-page: 256
  ident: bib0270
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Mach. Learn.
– volume: vol. 36
  start-page: 3706
  year: 2023
  end-page: 3731
  ident: bib0150
  article-title: Difusco: graph-based diffusion solvers for combinatorial optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 77416
  year: 2023
  end-page: 77429
  ident: bib0110
  article-title: Bq-NCO: bisimulation quotienting for efficient neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 508
  year: 2014
  end-page: 520
  ident: bib0010
  article-title: Principles of genetic circuit design
  publication-title: Nat. Methods
– volume: 140
  year: 2022
  ident: bib0280
  article-title: Hybrid genetic search for the CVRP: open-source implementation and swap* neighborhood
  publication-title: Comput. Oper. Res.
– volume: 12
  start-page: 966
  year: 2017
  end-page: 980
  ident: bib0025
  article-title: An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems
  publication-title: Roskilde: Roskilde University
– start-page: 884
  year: 2024
  end-page: 895
  ident: bib0095
  article-title: Hierarchical neural constructive solver for real-world TSP scenarios
  publication-title: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– volume: 22
  start-page: 2033
  year: 2022
  end-page: 2062
  ident: bib0245
  article-title: Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification
  publication-title: Oper. Res.
– volume: vol. 36
  start-page: 8845
  year: 2023
  end-page: 8864
  ident: bib0080
  article-title: Neural combinatorial optimization with heavy decoder: toward large scale generalization
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 5138
  year: 2021
  end-page: 5149
  ident: bib0180
  article-title: Matrix encoding networks for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: bib0235
  article-title: Neural combinatorial optimization algorithms for solving vehicle routing problems: a comprehensive survey with perspectives
– volume: vol. 37
  start-page: 8132
  year: 2023
  end-page: 8140
  ident: bib0195
  article-title: Pointerformer: deep reinforced multi-pointer transformer for the traveling salesman problem
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2025
  ident: bib0290
  article-title: Large language models as end-to-end combinatorial optimization solvers
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2017
  ident: bib0175
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: bib0205
  article-title: Rethinking supervised learning based neural combinatorial optimization for routing problem
  publication-title: ACM Trans. Evol. Learn.
– year: 2016
  ident: bib0140
  article-title: Neural combinatorial optimization with reinforcement learning
– volume: 33
  start-page: 5057
  year: 2021
  end-page: 5069
  ident: bib0070
  article-title: Learning improvement heuristics for solving routing problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 24
  start-page: 15652
  year: 2023
  end-page: 15666
  ident: bib0255
  article-title: Neural airport ground handling
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 7474
  year: 2022
  end-page: 7482
  ident: bib0125
  article-title: Generalize a small pre-trained model to arbitrarily large TSP instances
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: vol. 38
  start-page: 20284
  year: 2024
  end-page: 20292
  ident: bib0215
  article-title: Glop: learning global partition and local construction for solving large-scale routing problems in real-time
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– reference: F. Didier, L. Perron, S. Mohajeri, S.A. Gay, T. Cuvelier, V. Furnon, Or-tools’ vehicle routing solver: a generic constraint-programming solver with heuristic search for routing problems (2023).
– volume: 34
  start-page: 10418
  year: 2021
  end-page: 10430
  ident: bib0190
  article-title: Learning collaborative policies to solve NP-hard routing problems
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 62
  year: 2010
  ident: 10.1016/j.neucom.2025.131707_bib0005
  article-title: Vehicle routing problems with alternative paths: an application to on-demand transportation
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.10.002
– volume: 36
  start-page: 48485
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0200
  article-title: Winner takes it all: training performant RL populations for combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0205
  article-title: Rethinking supervised learning based neural combinatorial optimization for routing problem
  publication-title: ACM Trans. Evol. Learn.
  doi: 10.1145/3694690
– volume: 35
  start-page: 8760
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0265
  article-title: Simulation-guided beam search for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 229
  issue: 3
  year: 1992
  ident: 10.1016/j.neucom.2025.131707_bib0270
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022672621406
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0260
  article-title: Novel applications of ant colony optimization with the traveling salesman problem in DNA sequence optimization
– volume: vol. 34
  start-page: 7472
  year: 2021
  ident: 10.1016/j.neucom.2025.131707_bib0115
  article-title: NeuroLKH: combining deep learning model with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem
– volume: 12
  start-page: 966
  year: 2017
  ident: 10.1016/j.neucom.2025.131707_bib0025
  article-title: An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems
  publication-title: Roskilde: Roskilde University
– volume: 11
  start-page: 508
  issue: 5
  year: 2014
  ident: 10.1016/j.neucom.2025.131707_bib0010
  article-title: Principles of genetic circuit design
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2926
– start-page: 7474
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0125
  article-title: Generalize a small pre-trained model to arbitrarily large TSP instances
  publication-title: Proc. AAAI Conf. Artif. Intell.
– start-page: 9861
  year: 2018
  ident: 10.1016/j.neucom.2025.131707_bib0135
  article-title: Reinforcement learning for solving the vehicle routing problem
– ident: 10.1016/j.neucom.2025.131707_bib0050
– volume: 19
  start-page: 1600
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0105
  article-title: Flexible job-shop scheduling via graph neural network and deep reinforcement learning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3189725
– volume: 33
  start-page: 5057
  issue: 9
  year: 2021
  ident: 10.1016/j.neucom.2025.131707_bib0070
  article-title: Learning improvement heuristics for solving routing problems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3068828
– year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0065
  article-title: Efficient active search for combinatorial optimization problems
– start-page: 43346
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0155
  article-title: A diffusion model framework for unsupervised neural combinatorial optimization
– volume: 26
  start-page: 14
  issue: 1
  year: 2003
  ident: 10.1016/j.neucom.2025.131707_bib0250
  article-title: Optimizing the operation sequence of a chip placement machine using TSP model
  publication-title: IEEE Trans. Electron. Packag. Manuf.
  doi: 10.1109/TEPM.2003.813002
– ident: 10.1016/j.neucom.2025.131707_bib0020
– year: 2017
  ident: 10.1016/j.neucom.2025.131707_bib0175
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 33
  start-page: 1621
  year: 2020
  ident: 10.1016/j.neucom.2025.131707_bib0015
  article-title: Learning to dispatch for job shop scheduling via deep reinforcement learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 42769
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0090
  article-title: Towards omni-generalizable neural methods for vehicle routing problems
– volume: vol. 37
  start-page: 9345
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0220
  article-title: H-tsp: Hierarchically solving the large-scale traveling salesman problem
– year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0040
  article-title: A virtual-sensor construction network based on physical imaging for image super-resolution
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2024.3472494
– volume: vol. 36
  start-page: 9136
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0145
  article-title: Learning to solve travelling salesman problem with hardness-adaptive curriculum
– year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0210
  article-title: Generalize learned heuristics to solve large-scale vehicle routing problems in real-time
– volume: vol. 35
  start-page: 12042
  year: 2021
  ident: 10.1016/j.neucom.2025.131707_bib0185
  article-title: Multi-decoder attention model with embedding glimpse for solving vehicle routing problems
– year: 2025
  ident: 10.1016/j.neucom.2025.131707_bib0290
  article-title: Large language models as end-to-end combinatorial optimization solvers
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
  ident: 10.1016/j.neucom.2025.131707_bib0140
  article-title: Neural combinatorial optimization with reinforcement learning
– ident: 10.1016/j.neucom.2025.131707_bib0235
– volume: vol. 36
  start-page: 49555
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0120
  article-title: Learning to search feasible and infeasible regions of routing problems with flexible neural k-opt
– volume: vol. 36
  start-page: 3706
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0150
  article-title: Difusco: graph-based diffusion solvers for combinatorial optimization
– volume: 36
  start-page: 77416
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0110
  article-title: Bq-NCO: bisimulation quotienting for efficient neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 55
  start-page: 11055
  issue: 8
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0030
  article-title: Analysis of Markovian jump stochastic Cohen–Grossberg BAM neural networks with time delays for exponential input-to-state stability
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-023-11364-4
– volume: vol. 38
  start-page: 20284
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0215
  article-title: Glop: learning global partition and local construction for solving large-scale routing problems in real-time
– volume: vol. 37
  start-page: 93479
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0100
  article-title: Learning to handle complex constraints for vehicle routing problems
– year: 2020
  ident: 10.1016/j.neucom.2025.131707_bib0085
  article-title: Evaluating curriculum learning strategies in neural combinatorial optimization
– year: 2025
  ident: 10.1016/j.neucom.2025.131707_bib0285
  article-title: Boosting neural combinatorial optimization for large-scale vehicle routing problems
– start-page: 6914
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0230
  article-title: Towards generalizable neural solvers for vehicle routing problems via ensemble with transferrable local policy
– ident: 10.1016/j.neucom.2025.131707_bib0165
– volume: 34
  start-page: 5138
  year: 2021
  ident: 10.1016/j.neucom.2025.131707_bib0180
  article-title: Matrix encoding networks for neural combinatorial optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 6
  start-page: 80
  issue: 1
  year: 1959
  ident: 10.1016/j.neucom.2025.131707_bib0240
  article-title: The truck dispatching problem
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.6.1.80
– volume: 33
  start-page: 21188
  year: 2020
  ident: 10.1016/j.neucom.2025.131707_bib0060
  article-title: Pomo: policy optimization with multiple optima for reinforcement learning
  publication-title: Neural Inf. Process. Syst.
– start-page: 884
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0095
  article-title: Hierarchical neural constructive solver for real-world TSP scenarios
– volume: vol. 37
  start-page: 8132
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0195
  article-title: Pointerformer: deep reinforced multi-pointer transformer for the traveling salesman problem
– volume: 24
  start-page: 15652
  issue: 12
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0255
  article-title: Neural airport ground handling
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3253552
– volume: 30
  year: 2017
  ident: 10.1016/j.neucom.2025.131707_bib0170
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 22
  start-page: 2033
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0245
  article-title: Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification
  publication-title: Oper. Res.
– volume: vol. 36
  start-page: 8845
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0080
  article-title: Neural combinatorial optimization with heavy decoder: toward large scale generalization
– volume: 140
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0280
  article-title: Hybrid genetic search for the CVRP: open-source implementation and swap* neighborhood
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105643
– volume: vol. 28
  year: 2015
  ident: 10.1016/j.neucom.2025.131707_bib0045
  article-title: Pointer networks
– volume: vol. 33
  start-page: 4731
  year: 2019
  ident: 10.1016/j.neucom.2025.131707_bib0075
  article-title: Learning to solve NP-complete problems: a graph neural network for decision TSP
– volume: 195
  year: 2024
  ident: 10.1016/j.neucom.2025.131707_bib0035
  article-title: Finite-time h∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic sampled-data control
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2024.103482
– ident: 10.1016/j.neucom.2025.131707_bib0275
– volume: 36
  start-page: 47264
  year: 2023
  ident: 10.1016/j.neucom.2025.131707_bib0130
  article-title: Unsupervised learning for solving the travelling salesman problem
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 10418
  year: 2021
  ident: 10.1016/j.neucom.2025.131707_bib0190
  article-title: Learning collaborative policies to solve NP-hard routing problems
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0160
  article-title: Generalization of neural combinatorial solvers through the lens of adversarial robustness
– year: 2019
  ident: 10.1016/j.neucom.2025.131707_bib0055
  article-title: Attention, learn to solve routing problems!
– start-page: 4648
  year: 2022
  ident: 10.1016/j.neucom.2025.131707_bib0225
  article-title: Rbg: hierarchically solving large-scale routing problems in logistic systems via reinforcement learning
SSID ssj0017129
Score 2.4607952
Snippet Neural Combinatorial Optimization (NCO) methods have garnered considerable attention, due to their effectiveness in automatic algorithm design for solving...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 131707
SubjectTerms Attention model
Neural combinatorial optimization
Reinforcement learning
Vehicle routing problem
Title Enhancing neural combinatorial optimization by progressive training paradigm
URI https://dx.doi.org/10.1016/j.neucom.2025.131707
Volume 659
WOSCitedRecordID wos001602742100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode-i5JX-jQW3CwZT3s4xK2bEsIhaaw9GJkPTYOrJ0mm3T77zt62HWypbSFXowRSDbzifGn8cw3CL3NOautFTIBqkoTalOdSM4BEJIyUlugc9wXCh-J4-NisSg_xm6jl76dgGjbYrMpz_8r1DAGYLvS2b-Ae1gUBuAeQIcrwA7XPwJ-1p46DY12ue-0Kr38xwqOv-5w7aLjHfiIVSy-dNzTJ2i5XNhrM_SL2HeC4LpZrsbU1ct4KN8EIoYXpiunsqDdlhrCCYfSx16_nDaDu7_ybl52m2bYiPMuDn7tv5wuBcjHVuddu_xmmnE0gtyORmyXyYRYI2EJEMkbbpcHJfAtFx6iCWcHYCOXzwMPYQcZsJzQHPeWOPYnt7RbGZgcycHX3EU7RLCymKCd6fvZ4sPwR0lkJOguxlfpyyh9rt_2s35NU0bU4-QRehDPDHgasH6M7pj2CXrY9-PA0T0_RUcD9DhAj29Aj8fQ4_o7HkGPe-hxD_0z9Pnd7ORwnsRuGYkCt7tOjKxlzQpF4BvEBZfW5tqKWgmltCaSCsMol3VZc6moITYF5qq1ZJnhSqQ6zZ-jSdu1ZhfhQnFSSgrUs9Y0p7akmc4ybgyTTi5f7KGkN051HkRRqj5b8KwKxqycMatgzD0kegtWkdgFwlYB6L-d-eKfZ75E93_uz1dosr64Mq_RPXW9bi4v3sTd8QPOOHcZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+neural+combinatorial+optimization+by+progressive+training+paradigm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Cao%2C+Zhi&rft.au=Wu%2C+Yaoxin&rft.au=Hou%2C+Yaqing&rft.au=Ge%2C+Hongwei&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=659&rft_id=info:doi/10.1016%2Fj.neucom.2025.131707&rft.externalDocID=S0925231225023793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon