A novel image enhancement method based on image decomposition and deep neural networks

•We propose a novel image decomposition-based optimization model for low-light image enhancement, by using the total variation and multi-scale convolutional sparse coding to precisely represent illumination and reflectance layers.•We integrate deep unfolding networks into framework of the proposed o...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 172; p. 112371
Main Authors: Xiao, Yao, Xia, Youshen
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.04.2026
Subjects:
ISSN:0031-3203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We propose a novel image decomposition-based optimization model for low-light image enhancement, by using the total variation and multi-scale convolutional sparse coding to precisely represent illumination and reflectance layers.•We integrate deep unfolding networks into framework of the proposed optimization algorithm.•The deep unfolding network automatically estimates the priors from training samples.•Experimental results demonstrate that the proposed method outperforms state-of-the-art image enhancement methods in terms of visual quality and robutsness. Image decomposition and deep learning are active research areas in computer vision tasks, such as cartoon texture decomposition, low-light image enhancement, rain streak removal, image recovery, etc. This paper proposes a novel low-light image enhancement method by joining image decomposition and deep neural network techniques. We introduce a new image decomposition-based optimization model by incorporating the Tikhonov regularization and multi-scale convolutional sparse coding (MSCSC) to enhance image visual effects. To enhance robustness performance, we introduce a noise-free image decomposition error term to effectively suppress noise in low-light images. To effectively implement the proposed method, we incorporate a deep-unfolding neural network and an adaptive denoiser into the alternating direction method of multipliers (ADMM) framework. Since the deep unfolding network can effectively simulate the optimization algorithm process, the interpretability of the network model is increased. Moreover, through end-to-end training, we can automatically estimate the two priors and parameter settings from training samples. Finally, qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art image enhancement methods in terms of visual quality and robustness. The source code is available at https://github.com/cassiopeia-yxx/LLIE.
AbstractList •We propose a novel image decomposition-based optimization model for low-light image enhancement, by using the total variation and multi-scale convolutional sparse coding to precisely represent illumination and reflectance layers.•We integrate deep unfolding networks into framework of the proposed optimization algorithm.•The deep unfolding network automatically estimates the priors from training samples.•Experimental results demonstrate that the proposed method outperforms state-of-the-art image enhancement methods in terms of visual quality and robutsness. Image decomposition and deep learning are active research areas in computer vision tasks, such as cartoon texture decomposition, low-light image enhancement, rain streak removal, image recovery, etc. This paper proposes a novel low-light image enhancement method by joining image decomposition and deep neural network techniques. We introduce a new image decomposition-based optimization model by incorporating the Tikhonov regularization and multi-scale convolutional sparse coding (MSCSC) to enhance image visual effects. To enhance robustness performance, we introduce a noise-free image decomposition error term to effectively suppress noise in low-light images. To effectively implement the proposed method, we incorporate a deep-unfolding neural network and an adaptive denoiser into the alternating direction method of multipliers (ADMM) framework. Since the deep unfolding network can effectively simulate the optimization algorithm process, the interpretability of the network model is increased. Moreover, through end-to-end training, we can automatically estimate the two priors and parameter settings from training samples. Finally, qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art image enhancement methods in terms of visual quality and robustness. The source code is available at https://github.com/cassiopeia-yxx/LLIE.
ArticleNumber 112371
Author Xia, Youshen
Xiao, Yao
Author_xml – sequence: 1
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  email: xiaoyao227192@163.com
  organization: College of Artificial Intelligence, Anhui University, HeFei, China
– sequence: 2
  givenname: Youshen
  surname: Xia
  fullname: Xia, Youshen
  email: ysxia2001@163.com
  organization: College of Artificial Intelligence, Anhui University, HeFei, China
BookMark eNp9kM1OwzAQhH0oEm3hDTjkBRJs58fkglRV_FSqxAW4Wht707o0dmSbIt4eV-mZ00ijndHstyAz6ywScsdowShr7g_FCFG5XcEprwvGeCnYjMwpLVleclpek0UIB0qZYBWfk89VZt0Jj5kZYIcZ2j1YhQPamA0Y905nHQTUmbOXC43KDaMLJprkgdXJwTGz-O3hmCT-OP8VbshVD8eAtxddko_np_f1a759e9msV9tc8VrEXFeqfUAqmkYBdLwTjKm-bxl2CqpeQJ9mdw2ossdOCCjbigJtQNSsFjVvebkk1dSrvAvBYy9Hn3b6X8moPPOQBznxkGcecuKRYo9TDNO2k0EvgzKYHtfGo4pSO_N_wR_xC3Ad
Cites_doi 10.1109/TCI.2024.3420942
10.1016/j.patcog.2024.111033
10.1109/TIP.2018.2839891
10.1016/j.knosys.2024.111779
10.1109/TCSVT.2022.3195996
10.1109/LSP.2022.3175096
10.1016/j.jvcir.2022.103712
10.1109/TIP.2021.3050850
10.1109/LSP.2012.2227726
10.1109/TCSVT.2021.3073371
10.1016/j.patcog.2022.109241
10.1016/j.patcog.2016.06.008
10.1109/TIP.2022.3189805
10.1016/j.patcog.2024.111076
10.1038/scientificamerican1277-108
10.1016/j.neucom.2022.12.043
10.1016/j.apm.2022.11.022
10.1109/TIP.2018.2810539
10.1109/TIP.2012.2214050
10.1109/TIP.2020.2974060
10.1073/pnas.80.16.5163
10.1109/TIP.2016.2639450
10.1109/TIP.2020.2984098
10.1023/A:1022314423998
10.1109/TIP.2006.888338
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2025.112371
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2025_112371
S0031320325010325
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADMXK
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c257t-d4c98e0766caab2b711cff91ebca4f7af003b6ac3feb77a3940a06a7515752923
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:00:38 EST 2025
Sat Oct 04 17:01:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Image decomposition
Retinex theory
Low-light image enhancement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c257t-d4c98e0766caab2b711cff91ebca4f7af003b6ac3feb77a3940a06a7515752923
ParticipantIDs crossref_primary_10_1016_j_patcog_2025_112371
elsevier_sciencedirect_doi_10_1016_j_patcog_2025_112371
PublicationCentury 2000
PublicationDate April 2026
2026-04-00
PublicationDateYYYYMMDD 2026-04-01
PublicationDate_xml – month: 04
  year: 2026
  text: April 2026
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Wang, Yang, Liu (bib0008) 2018
Fu, Yang, Tu, Huang, Ding, Ma (bib0009) 2023
Kimmel, Elad, Shaked, Keshet, Sobel (bib0016) 2003; 52
Wen, Xu, Li, ATO (bib0011) 2025; 158
Zhao, Xiong, Wang, Ou, Yu, Kuang (bib0018) 2022; 32
Liu, Ma, Ma, Fan, Luo (bib0033) 2023; 45
Xiao, Xia (bib0017) 2024
Ren, Yang, Cheng, Liu (bib0003) 2020; 29
Hai, Xuan, Yang, Hao, Zou, Lin, Han (bib0029) 2023; 90
Agaian, Silver, Panetta (bib0036) 2007; 16
Lin, Lu (bib0014) 2022; 31
Du, Zhao, Liu, You, Shi, Li, Xu (bib0015) 2023; 116
Lore, Akintayo, Sarkar (bib0007) 2017; 61
Guo, Li, Ling (bib0012) 2016; 26
Zhao, Zhang, Bai, Wang, Cui, Deng, Sun, Zhang, Liu, Xu (bib0026) 2023
Xu, Liu, Zhang, Wu, Zuo (bib0030) 2024; 295
Yang, Wang, Huang, Wang, Liu (bib0020) 2021; 30
Wu, Weng, Zhang, Wang, Yang, Jiang (bib0022) 2022
Gregor, LeCun (bib0021) 2010
Mittal, Moorthy, Bovik (bib0035) 2012; 21
Li, Liu, Yang, Sun, Guo (bib0013) 2018; 27
Zhang, Zuo, Gu, Zhang (bib0027) 2017
Land (bib0001) 1983; 80
Xu, Hou, Ren, Liu, Zhu, Yu, Wang, Shao (bib0002) 2020; 29
Xu, Hu, Hu, Jing, Cai, Lu (bib0010) 2025; 158
Martin, Fowlkes, Tal, Malik (bib0028) 2001; 2
Zhao, Chen, Zhang, Wang, Bai (bib0023) 2024; 10
Liu, Wu, Wang (bib0031) 2023; 32
Zhao, Wang, Zhang, Wang, Bai (bib0019) 2023; 524
Fu, Zeng, Huang, Zhang, Ding (bib0005) 2016
Ma, Ma, Liu, Fan, Luo (bib0032) 2022
Mittal, Soundararajan, Bovik (bib0034) 2012; 20
Du, Liu, Zhao, Xu, Li, You (bib0004) 2023; 136
Land (bib0006) 1977; 237
Xu, Deng, Xu (bib0024) 2022; 29
Sreter, Giryes (bib0025) 2018
Zhang, Zuo, Zhang (bib0037) 2018; 27
Yang (10.1016/j.patcog.2025.112371_bib0020) 2021; 30
Zhang (10.1016/j.patcog.2025.112371_bib0027) 2017
Li (10.1016/j.patcog.2025.112371_bib0013) 2018; 27
Mittal (10.1016/j.patcog.2025.112371_bib0034) 2012; 20
Wei (10.1016/j.patcog.2025.112371_bib0008) 2018
Land (10.1016/j.patcog.2025.112371_bib0006) 1977; 237
Guo (10.1016/j.patcog.2025.112371_bib0012) 2016; 26
Sreter (10.1016/j.patcog.2025.112371_bib0025) 2018
Zhang (10.1016/j.patcog.2025.112371_bib0037) 2018; 27
Gregor (10.1016/j.patcog.2025.112371_bib0021) 2010
Zhao (10.1016/j.patcog.2025.112371_bib0023) 2024; 10
Wen (10.1016/j.patcog.2025.112371_bib0011) 2025; 158
Martin (10.1016/j.patcog.2025.112371_bib0028) 2001; 2
Du (10.1016/j.patcog.2025.112371_bib0004) 2023; 136
Agaian (10.1016/j.patcog.2025.112371_bib0036) 2007; 16
Hai (10.1016/j.patcog.2025.112371_bib0029) 2023; 90
Wu (10.1016/j.patcog.2025.112371_bib0022) 2022
Mittal (10.1016/j.patcog.2025.112371_bib0035) 2012; 21
Zhao (10.1016/j.patcog.2025.112371_bib0019) 2023; 524
Ma (10.1016/j.patcog.2025.112371_bib0032) 2022
Xu (10.1016/j.patcog.2025.112371_bib0002) 2020; 29
Fu (10.1016/j.patcog.2025.112371_bib0009) 2023
Liu (10.1016/j.patcog.2025.112371_bib0033) 2023; 45
Xu (10.1016/j.patcog.2025.112371_bib0024) 2022; 29
Kimmel (10.1016/j.patcog.2025.112371_bib0016) 2003; 52
Xiao (10.1016/j.patcog.2025.112371_bib0017) 2024
Xu (10.1016/j.patcog.2025.112371_bib0030) 2024; 295
Fu (10.1016/j.patcog.2025.112371_bib0005) 2016
Zhao (10.1016/j.patcog.2025.112371_bib0018) 2022; 32
Ren (10.1016/j.patcog.2025.112371_bib0003) 2020; 29
Lin (10.1016/j.patcog.2025.112371_bib0014) 2022; 31
Lore (10.1016/j.patcog.2025.112371_bib0007) 2017; 61
Land (10.1016/j.patcog.2025.112371_bib0001) 1983; 80
Xu (10.1016/j.patcog.2025.112371_bib0010) 2025; 158
Liu (10.1016/j.patcog.2025.112371_bib0031) 2023; 32
Du (10.1016/j.patcog.2025.112371_bib0015) 2023; 116
Zhao (10.1016/j.patcog.2025.112371_bib0026) 2023
References_xml – volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: bib0007
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
– volume: 158
  year: 2025
  ident: bib0010
  article-title: UPT-Flow: multi-scale transformer-guided normalizing flow for low-light image enhancement
  publication-title: Pattern Recognit.
– volume: 52
  start-page: 7
  year: 2003
  end-page: 23
  ident: bib0016
  article-title: A variational framework for retinex
  publication-title: Int. J. Comput. Vis.
– volume: 27
  start-page: 2828
  year: 2018
  end-page: 2841
  ident: bib0013
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
– volume: 237
  start-page: 108
  year: 1977
  end-page: 129
  ident: bib0006
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
– volume: 158
  year: 2025
  ident: bib0011
  article-title: An illumination-guided dual attention vision transformer for low-light image enhancement
  publication-title: Pattern Recognit.
– start-page: 211
  year: 2024
  end-page: 218
  ident: bib0017
  article-title: An image decomposition-based enhancement using a matrix iterative algorithm
  publication-title: 2024 12th International Conference on Intelligent Control and Information Processing (ICICIP)
– volume: 90
  year: 2023
  ident: bib0029
  article-title: R2rnet: Low-light image enhancement via real-low to real-normal network
  publication-title: J. Vis. Commun. Image Represent
– start-page: 22252
  year: 2023
  end-page: 22261
  ident: bib0009
  article-title: Learning a simple low-light image enhancer from paired low-light instances
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 29
  start-page: 1202
  year: 2022
  end-page: 1206
  ident: bib0024
  article-title: Revisiting convolutional sparse coding for image denoising: from a multi-scale perspective
  publication-title: IEEE Signal Process. Lett.
– volume: 136
  year: 2023
  ident: bib0004
  article-title: A new image decomposition approach using pixel-wise analysis sparsity model
  publication-title: Pattern Recognit.
– start-page: 2191
  year: 2018
  end-page: 2195
  ident: bib0025
  article-title: Learned convolutional sparse coding
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 399
  year: 2010
  end-page: 406
  ident: bib0021
  article-title: Learning fast approximations of sparse coding
  publication-title: Proceedings of the 27th international conference on international conference on machine learning
– year: 2017
  ident: bib0027
  article-title: Learning deep CNN denoiser prior for image restoration
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 45
  start-page: 5953
  year: 2023
  end-page: 5969
  ident: bib0033
  article-title: Learning with nested scene modeling and cooperative architecture search for low-light vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 1076
  year: 2022
  end-page: 1088
  ident: bib0018
  article-title: RetinexDIP: a unified deep framework for low-light image enhancement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 10
  year: 2024
  ident: bib0023
  article-title: RIRO: From retinex-inspired reconstruction optimization model to deep low-light image enhancement unfolding network
  publication-title: IEEE Trans. Comput. Imaging
– volume: 20
  start-page: 209
  year: 2012
  end-page: 212
  ident: bib0034
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
– year: 2018
  ident: bib0008
  article-title: Deep retinex decomposition for low-light enhancement
  publication-title: British Machine Vision Conference
– volume: 2
  start-page: 416
  year: 2001
  end-page: 423
  ident: bib0028
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
  publication-title: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001
– volume: 32
  start-page: 8486
  year: 2023
  end-page: 8499
  ident: bib0031
  article-title: EFINet: restoration for low-light images via enhancement-fusion iterative network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 116
  start-page: 1
  year: 2023
  end-page: 15
  ident: bib0015
  article-title: Low-light image enhancement and denoising via dual-constrained retinex model
  publication-title: Appl. Math. Model.
– start-page: 5901
  year: 2022
  end-page: 5910
  ident: bib0022
  article-title: Uretinex-Net: retinex-based deep unfolding network for low-light image enhancement
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 295
  year: 2024
  ident: bib0030
  article-title: Degraded structure and hue guided auxiliary learning for low-light image enhancement
  publication-title: Knowl. Based Syst.
– volume: 26
  start-page: 982
  year: 2016
  end-page: 993
  ident: bib0012
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
– start-page: 5637
  year: 2022
  end-page: 5646
  ident: bib0032
  article-title: Toward fast, flexible, and robust low-light image enhancement
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 80
  start-page: 5163
  year: 1983
  end-page: 5169
  ident: bib0001
  article-title: Recent advances in retinex theory and some implications for cortical computations color vision and the natural image
  publication-title: Proc. National Acad. Sci.
– volume: 16
  start-page: 741
  year: 2007
  end-page: 758
  ident: bib0036
  article-title: Transform coefficient histogram-based image enhancement algorithms using contrast entropy
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 5022
  year: 2020
  end-page: 5037
  ident: bib0002
  article-title: STAR: a structure and texture aware retinex model
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 2072
  year: 2021
  end-page: 2086
  ident: bib0020
  article-title: Sparse gradient regularized deep retinex network for robust low-light image enhancement
  publication-title: IEEE Trans. Image Process.
– start-page: 2368
  year: 2023
  end-page: 2376
  ident: bib0026
  article-title: Deep convolutional sparse coding networks for interpretable image fusion
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 29
  start-page: 5862
  year: 2020
  end-page: 5876
  ident: bib0003
  article-title: LR3M: robust low-light enhancement via low-rank regularized retinex model
  publication-title: IEEE Trans. Image Process.
– volume: 31
  start-page: 4897
  year: 2022
  end-page: 4908
  ident: bib0014
  article-title: Low-light enhancement using a plug-and-play retinex model with shrinkage mapping for illumination estimation
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 4695
  year: 2012
  end-page: 4708
  ident: bib0035
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 4608
  year: 2018
  end-page: 4622
  ident: bib0037
  article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 524
  start-page: 126
  year: 2023
  end-page: 141
  ident: bib0019
  article-title: Learning deep texture-structure decomposition for low-light image restoration and enhancement
  publication-title: Neurocomputing
– start-page: 2782
  year: 2016
  end-page: 2790
  ident: bib0005
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: 10.1016/j.patcog.2025.112371_bib0008
  article-title: Deep retinex decomposition for low-light enhancement
– volume: 10
  year: 2024
  ident: 10.1016/j.patcog.2025.112371_bib0023
  article-title: RIRO: From retinex-inspired reconstruction optimization model to deep low-light image enhancement unfolding network
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2024.3420942
– start-page: 22252
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0009
  article-title: Learning a simple low-light image enhancer from paired low-light instances
– volume: 158
  year: 2025
  ident: 10.1016/j.patcog.2025.112371_bib0011
  article-title: An illumination-guided dual attention vision transformer for low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.111033
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2025.112371_bib0037
  article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2839891
– volume: 295
  year: 2024
  ident: 10.1016/j.patcog.2025.112371_bib0030
  article-title: Degraded structure and hue guided auxiliary learning for low-light image enhancement
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111779
– start-page: 2191
  year: 2018
  ident: 10.1016/j.patcog.2025.112371_bib0025
  article-title: Learned convolutional sparse coding
– volume: 32
  start-page: 8486
  issue: 12
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0031
  article-title: EFINet: restoration for low-light images via enhancement-fusion iterative network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3195996
– volume: 29
  start-page: 1202
  year: 2022
  ident: 10.1016/j.patcog.2025.112371_bib0024
  article-title: Revisiting convolutional sparse coding for image denoising: from a multi-scale perspective
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2022.3175096
– volume: 90
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0029
  article-title: R2rnet: Low-light image enhancement via real-low to real-normal network
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2022.103712
– start-page: 211
  year: 2024
  ident: 10.1016/j.patcog.2025.112371_bib0017
  article-title: An image decomposition-based enhancement using a matrix iterative algorithm
– volume: 30
  start-page: 2072
  year: 2021
  ident: 10.1016/j.patcog.2025.112371_bib0020
  article-title: Sparse gradient regularized deep retinex network for robust low-light image enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3050850
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2025.112371_bib0034
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– start-page: 2368
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0026
  article-title: Deep convolutional sparse coding networks for interpretable image fusion
– start-page: 5637
  year: 2022
  ident: 10.1016/j.patcog.2025.112371_bib0032
  article-title: Toward fast, flexible, and robust low-light image enhancement
– volume: 32
  start-page: 1076
  issue: 3
  year: 2022
  ident: 10.1016/j.patcog.2025.112371_bib0018
  article-title: RetinexDIP: a unified deep framework for low-light image enhancement
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3073371
– volume: 136
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0004
  article-title: A new image decomposition approach using pixel-wise analysis sparsity model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109241
– volume: 61
  start-page: 650
  year: 2017
  ident: 10.1016/j.patcog.2025.112371_bib0007
  article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 31
  start-page: 4897
  year: 2022
  ident: 10.1016/j.patcog.2025.112371_bib0014
  article-title: Low-light enhancement using a plug-and-play retinex model with shrinkage mapping for illumination estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3189805
– volume: 45
  start-page: 5953
  issue: 5
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0033
  article-title: Learning with nested scene modeling and cooperative architecture search for low-light vision
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 158
  year: 2025
  ident: 10.1016/j.patcog.2025.112371_bib0010
  article-title: UPT-Flow: multi-scale transformer-guided normalizing flow for low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2024.111076
– volume: 237
  start-page: 108
  issue: 6
  year: 1977
  ident: 10.1016/j.patcog.2025.112371_bib0006
  article-title: The retinex theory of color vision
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican1277-108
– volume: 524
  start-page: 126
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0019
  article-title: Learning deep texture-structure decomposition for low-light image restoration and enhancement
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.12.043
– volume: 116
  start-page: 1
  year: 2023
  ident: 10.1016/j.patcog.2025.112371_bib0015
  article-title: Low-light image enhancement and denoising via dual-constrained retinex model
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.11.022
– start-page: 5901
  year: 2022
  ident: 10.1016/j.patcog.2025.112371_bib0022
  article-title: Uretinex-Net: retinex-based deep unfolding network for low-light image enhancement
– volume: 27
  start-page: 2828
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2025.112371_bib0013
  article-title: Structure-revealing low-light image enhancement via robust retinex model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2810539
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: 10.1016/j.patcog.2025.112371_bib0035
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– start-page: 399
  year: 2010
  ident: 10.1016/j.patcog.2025.112371_bib0021
  article-title: Learning fast approximations of sparse coding
– year: 2017
  ident: 10.1016/j.patcog.2025.112371_bib0027
  article-title: Learning deep CNN denoiser prior for image restoration
– volume: 29
  start-page: 5022
  year: 2020
  ident: 10.1016/j.patcog.2025.112371_bib0002
  article-title: STAR: a structure and texture aware retinex model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2974060
– volume: 80
  start-page: 5163
  issue: 16
  year: 1983
  ident: 10.1016/j.patcog.2025.112371_bib0001
  article-title: Recent advances in retinex theory and some implications for cortical computations color vision and the natural image
  publication-title: Proc. National Acad. Sci.
  doi: 10.1073/pnas.80.16.5163
– volume: 26
  start-page: 982
  issue: 2
  year: 2016
  ident: 10.1016/j.patcog.2025.112371_bib0012
  article-title: LIME: low-light image enhancement via illumination map estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2639450
– volume: 2
  start-page: 416
  year: 2001
  ident: 10.1016/j.patcog.2025.112371_bib0028
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
– volume: 29
  start-page: 5862
  year: 2020
  ident: 10.1016/j.patcog.2025.112371_bib0003
  article-title: LR3M: robust low-light enhancement via low-rank regularized retinex model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2984098
– volume: 52
  start-page: 7
  year: 2003
  ident: 10.1016/j.patcog.2025.112371_bib0016
  article-title: A variational framework for retinex
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1022314423998
– volume: 16
  start-page: 741
  issue: 3
  year: 2007
  ident: 10.1016/j.patcog.2025.112371_bib0036
  article-title: Transform coefficient histogram-based image enhancement algorithms using contrast entropy
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.888338
– start-page: 2782
  year: 2016
  ident: 10.1016/j.patcog.2025.112371_bib0005
  article-title: A weighted variational model for simultaneous reflectance and illumination estimation
SSID ssj0017142
Score 2.4954302
Snippet •We propose a novel image decomposition-based optimization model for low-light image enhancement, by using the total variation and multi-scale convolutional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112371
SubjectTerms Deep neural network
Image decomposition
Low-light image enhancement
Retinex theory
Title A novel image enhancement method based on image decomposition and deep neural networks
URI https://dx.doi.org/10.1016/j.patcog.2025.112371
Volume 172
WOSCitedRecordID wos001567653900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017142
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3NT9swFMCtrnDYZYOxaWwD-cCtCnIcN04uk6qJCdCEOLCpnCLbsUcROBUtFX_-nj_SpgOhcdgliizHifxznp_9PozQQc10TqQUiaEZS1itGfxSGhauXA8pLzWhwqfM_8HPzorxuDzv9b62sTCLG25t8fBQTv8raigD2C509gW4l41CAdwDdLgCdrj-E_jRwDYLfTOY3Dp3HG2vHFdv8g-nRQ_cxFU7I0GoUWvnVh59t7wtodZ6OnCJLgGfDW7is64Se-5zcro4mOh8tDLljyfC771eiqZT5Eua-9lVjDuLuww07zinRMmZpUlGSbYmOcOpO1H2geaWheNUHonlsENwfTiF6aX5DatyOjxcVV_Pgv3X7LT0GWzd0a6r0ErlWqlCK6_QBuXDsuijjdHJ0fh0aUfiKQv54uPXt8GT3sPv8dc8rZx0FI6LLfQmrhTwKBDeRj1t36G37SkcOArlHfRrhD1w7HHiDnAcgGMPHDc21lgDjgE4dsBxAI5b4O_Rz-9HF9-Ok3haRqJA7M6Tmqmy0ITnuRJCUsnTVBkDP55UghkuDHSCzIXKjJaci6xkRJBccFBo-ZCCnv8B9W1j9UeECZHGSNDtZVmAgsmK3NQkVUrCWt6l699FSdtN1TQkRamew7OLeNuXVVTsgsJWwQB59slPL3zTZ_R6NXq_oP787l7voU21mE9md_txdPwBcVVxbg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+enhancement+method+based+on+image+decomposition+and+deep+neural+networks&rft.jtitle=Pattern+recognition&rft.au=Xiao%2C+Yao&rft.au=Xia%2C+Youshen&rft.date=2026-04-01&rft.issn=0031-3203&rft.volume=172&rft.spage=112371&rft_id=info:doi/10.1016%2Fj.patcog.2025.112371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2025_112371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon